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Abstract:  Warm summer stream temperatures in the Truckee River pose a threat to threatened 
and endangered fish. Through the Water Quality Settlement Agreement (WQSA), the federal 
government and local agencies have agreed to purchase water rights to be used to help manage 
water quality in the river.  In particular, stream temperature is one of the indicators used to 
measure water quality. The acquired water will be stored in upstream reservoirs and released to 
improve downstream water quality. A prototype decision support system (DSS) has been 
developed to predict when temperature violations will occur, and to make decisions about when 
and how much to increase flows using the stored WQSA water.  The DSS implements an 
empirical model to predict maximum daily Truckee River water temperatures in June, July and 
August given predicted maximum daily air temperature and modeled average daily flow. The 
empirical model is created using a step-wise linear regression selection process using 1993 and 
1994 data. The model is validated using historic data and shown to work in a predictive mode. 
The predictive model includes a prediction confidence interval to quantify the uncertainty. This 
research, funded by the U.S. Bureau of Reclamation (USBR) uses a prototype set of operational 
policies in a DSS developed in RiverWare, and develops additional rules that calculate higher 
releases using stored WQSA water if the predicted water temperature at Reno is above the target 
value. Releases are determined from the temperature prediction relationship and a user-specified 
confidence level for meeting the target. Strategies are developed to effectively use the WQSA 
water throughout the season. These strategies are based on seasonal climate forecasts, the 
temperature of the river over the previous few days, and the amount of available WQSA water. 
The DSS model is tested using historical inflows for dry hydrology from 1988 to 1994. Various 
scenarios are explored that show the effect of changing the confidence level and using seasonal 
strategies. Results show that there is not enough water to avoid all temperature violations in a 
drought, however most of the early violations can be avoided with a high degree of certainty. 

INTRODUCTION 

Low flows threaten fish by deteriorating habitat and/or water quality. One of the most common 
summer water quality problems associated with low flows is high stream temperatures—low 
flows warm up more rapidly than higher flows. High stream temperatures reduce cold water fish 
populations by inhibiting growth and by killing fish at extremely high temperatures. For this rea-
son, the impact of low flows and high stream temperatures on fish is an issue in many operations 
studies and National Environmental Policy Act (NEPA) Environmental Impact Statement (EIS) 
analyses.  
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Management of water temperature by controlling flow in a large, multi-purpose, multi-reservoir 
basin can effectively be accomplished with the assistance of a model-based decision support 
system (DSS) that can predict temperature and incorporate temperature objectives into daily 
operations objectives. A practical DSS for daily use has the following functional requirements: 

1. A water temperature prediction model that is quick, accurate, and spatially and 
temporally consistent with the operations model. 

2. Quantification of confidence associated with the temperature prediction. 
3. Operations rules that use the stream temperature prediction and its confidence level to 

release water that benefits fish. 
4. Integration of other operating releases. 
5. Seasonal strategies incorporated in the operations to trade off meeting one day’s targets 

with the ability to meet seasonal needs.  

Two types of models have been developed in the past to predict stream temperatures: empirical 
or regression models and physical process models. Regression models use data to create 
relationships to quantify and predict stream temperatures at various time scales. In contrast, 
physical process models attempt to model the underlying processes that affect stream 
temperature such as conduction, radiation, advection, and dispersion. Although a mechanistic 
temperature model could, in theory, give very accurate results, this type of model requires 
numerous detailed input data, is computationally intensive and is, therefore, difficult to 
incorporate in a river and reservoir operations model. Empirical models can be computationally 
less intensive, therefore quick to implement and validate. With regression models it is possible to 
statistically quantify the uncertainty.  

This paper describes a DSS that meets the above requirements and is organized as follows: First 
we describe the background of the Truckee River and develop and verify an empirically based 
predictive stream temperature model. Next, we develop confidence levels for the predictive 
model using standard statistical techniques. Third, we create operations rules to release water to 
try to meet stream temperature targets with a desired level of confidence. We then modify the 
rules to incorporate long-term climate forecasts and information about the previous day’s stream 
temperature. Finally, we present and discuss the results.   

TRUCKEE RIVER BACKGROUND 

The methodology developed is applied to the Truckee River in California and Nevada. The 
Truckee River flows 187 km from Lake Tahoe in California’s Sierra Nevada Mountains through 
an arid desert before terminating in Nevada’s Lake Pyramid. The upstream reservoirs, shown in 
Figure 1, are operated to meet the Floriston Rates, a legal flow target measured at the Farad 
Gage near the California and Nevada border. The flow target, which dictates many of the release 
decisions in the basin, varies between 300-500 cfs depending on the time of year and the 
reservoir levels. At certain times of the year, river flows are lower than natural flows because 
water is stored in reservoirs and/or diverted for irrigation, municipal, and industrial use. During 
the summer months the low flows result in temperatures in the lower river that are too warm for 
endangered and threatened cold water fish. In accordance with the Water Quality Settlement 
Agreement (WQSA, 1996), the federal and local government will purchase water rights that will 
be used to improve the water quality of the Truckee River. The water acquired by the WQSA 
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will be stored in upstream reservoirs as Water Quality Credit Water (WQCW) and released as 
necessary to mitigate downstream water quality problems. This study aims to improve the stream 
temperature at Reno. Below Reno, wastewater effluent and irrigation return flows enter the river, 
making accurate temperature predictions more complex and uncertain. 

Fish tolerance levels:  
Stream temperature tar-
gets for fish are the 
maximum water tem-
perature fish can tolerate 
for a given duration. The 
levels used in this paper 
are based on a summary 
of Nevada standards 
given by Brock and 
Caupp (1996) in which 
the maximum tempera-
ture for juvenile Lahon-
tan cutthroat trout in 
summer is 24 ºC. Bender 
(2001) suggested modi-
fying the targets to include four-day maximum limits and allowable one-day maximum tempera-
tures. The resulting targets, shown in Table 1, are realistic, however not official. If the tempera-
ture on any given day occurs for more than the specified number of days, the fish are adversely 
affected. In this paper, that day is defined as a violation. 

Baseline operations model using 
RiverWare:  The USBR is currently 
creating a daily time-step rule-based 
model of the Truckee and Carson Rivers 
using RiverWare, a general purpose 
river and reservoir operations policy 
modeling software (Zagona et al, 2001). The rules attempt to model the current operations in the 
basin but are still under development; currently they do not represent all of the policies in the 
basin. We refer to this set of rules as the baseline operations. The baseline operations differ from 
both historical and current operations; therefore, the model cannot be calibrated or verified 
against historical observations.  

STREAM TEMPERATURE MODEL 

The goal of regression models is to fit a set of data with an equation, the simplest being a linear 
equation. The linear regression model takes the form: 

 nn xaxaxaaT ++++= Κ22110
ˆ     Equation 1 

where T̂  is the stream temperature, a0, a1, a2, ..., an are coefficients, and x1,x2, ..., xn are indepen-
dent predictors. The available data on the Truckee River include flows, stream temperatures, and 

Figure 1: Study section 

Table 1: Truckee River target temperatures 
Target (ºC) Description Time Period

Τ ≤ 22 Preferred Maximum > 4days 
22 < T ≤ 23 Chronic Maximum ≤ 4days 
23 < T ≤ 24 Acute Maximum ≤ 1day 

24 < T Absolute Maximum 0 days 
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air temperatures at various timesteps and locations. Most of the temperature data was collected 
after 1993. The most appropriate years to use in the empirical relationships are 1993 and 1994 
since these were dry years with low flows and high river temperatures. In addition, only data 
from June, July, and August is used. September is not included because the river cools in the 
latter half of the month. We chose to look at data for which the flow at Farad is less than 500 cfs 
because at flows above this threshold, there is rarely a temperature problem in the study reach.  

Figure 2 shows scatter plots of the candidate predictors and the maximum daily stream 
temperature at Reno along with a locally weighted regression fit (Loader, 1999). 
Since it appears 
that all of these 
predictors are 
related to Reno 
water tempera-
ture, a stepwise 
regression pro-
cedure is used to 
select the best 
subset of pre-
dictors from the 
candidate pre-
dictors. The 
stepwise proce-
dure selects the 
subset of pre-
dictors opti-
mizing on one the following indicator statistics: Mallow’s Cp, Akaike’s Information Criteria 
(AIC), R2, or adjusted R2. The AIC and Cp statistics are widely used because they try to achieve 
a good compromise between the desire to explain as much variance in the predictor variable as 
possible (minimize bias) by including all relevant predictor variables, and to minimize the 
variance of the resulting estimates (minimize the standard error) by keeping the number of 
coefficients small. The stepwise regression procedure fits all possible combinations of predictors 
and selects the model that results in the most optimal indicator statistic. We performed a 
stepwise procedure on the set of predictor variables listed above, optimizing on AIC. The 
stepwise procedure indicates that air temperature at Reno and flow at Farad are the significant 
predictors. A linear regression using the predictors selected has the following equation:  

QaTaaT Air 210
ˆ ++=       Equation 2 

where TAir is the air temperature at Reno and Q is the flow at Farad. The regression coefficients 
are a0 = 14.4 ºC, a1 = 0.40, and a2 = -0.014 ºC/cfs. The adjusted R2 for this regression is 0.915. 
Figure 3 shows the estimated values of maximum daily Truckee River temperature at Reno from 
the regression equation plotted against the historical observations.  

A local non-linear regression model (Loader, 1999) was also fit to the data using the predictors 
selected in the linear stepwise procedure. The local non-linear regression R2 is very similar to the 
R2 found from the linear model. Because the linear model is simpler and allows for easy 

Figure 2: Data used in regression relationship 
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uncertainty computations, we used the linear model. For other basins or predictors, a non-linear 
local regression fit may produce a reasonable fit.  

Model Diagnostics:  To investigate the 
performance of the regression model, we 
looked at the following diagnostics: 
normality of the residuals, auto 
correlation of the residuals, and a cross 
validation of the data. Linear regression 
theory assumes residuals are normally 
distributed and symmetric about the 
mean. To formally test for normality, a 
correlation is computed between the 
residual and normal quantiles. For the 
distribution to be normal, the correlation 
must be greater than or equal to the 95% 
confidence level, critical probability plot correlation coefficient from Helsel and Hirsch (1992). 
The correlation for our data is 0.987 and the critical value for a 95% confidence level and 108 
observations is 0.987. Therefore, the residuals are significantly normal. One of the assumptions 
of linear regression theory is that the residuals are not auto-correlated. An analysis of the auto-
correlation shows that there is some serial correlation between the residuals at lag 1 but shows 
no clear trends. Finally, a cross validation technique is used in which one historical observation 
is dropped from the fitting process and is predicted using the regression fit based on the 
remaining observations. This is repeated for all observations. The R2 value between the cross-
validated estimates and observed values is 0.91, which is quite good. This further shows that the 
relationship fits the data well.  

Model Verification:  An empirically developed multiple linear regression model may fit the 
data used to estimate the regression coefficients very well, but its ability to predict new data is 
not certain. We validate the model using observations not used in fitting the regression to assess 
the ability of the model to predict future events. Figure 4 shows the predicted and observed 
maximum daily stream temperature at Reno for June, July, and August of 1991. The predicted 
temperatures are from Equation 2. 

Missing predictions indicate that the Farad flow was greater than 500 cfs. The R2 value for this 
validation process, 0.74, is lower than the fitting procedure, which is consistent with linear 
regression theory. Figure 3 shows that there are two regions in the fitting procedure, the range 
above 23ºC has more scatter than the range below 23ºC. In other words, the regression is better 

 
Figure 3:  Estimated versus observed daily maxi-
mum stream temperature for the Truckee River 

at Reno, NV. Dotted line represents best fit. 

Figure 4: June-August 1991, validation of maximum daily stream temperatures 



 6

at explaining variance below 23ºC than above. As a result, the skill in predicting temperatures 
above 23ºC is not as good.  

Uncertainty of Predicted Temperatures:  To quantify the uncertainty of the regression, Helsel 
and Hirsch (1992, p. 300) define the confidence interval as the range (+/- the mean) of values in 
which the mean of estimates by regression will lie. For example, the 95% confidence interval 
indicates that 95% of the time, the mean estimated response variable will be within the interval. 
A similar concept called the prediction interval is used in a predictive mode. The prediction 
interval is defined as “the confidence interval for prediction of an estimate of an individual 
response variable.” For example, the 95% prediction interval indicates that 95% of the time the 
predicted value will be within the interval. Linear regression theory provides the upper predic-
tion interval to be approximated by (Helsel and Hirsch 1992, p. 300): 

σα ),(ˆ  Interval Prediction pnty −+=     Equation 3 
where ),( pnt −α  is the quantile given by the 100(α) percentile on the student’s t-distribution 
having n-p degrees of freedom (Ang and Tang, 1975, p. 237).  
At large degrees of freedom, (n-p), the 
students t-distribution is identical to a 
Gaussian distribution. The desired 
confidence level is 1-α and the data has a 
standard deviation σ . There are n 
observations used to create the regression 
and p explanatory variables plus one (for 
the intercept term). This means that with 
100(α) percent confidence, Equation 3 is 
the upper limit for the predicted value. 
Figure 5 shows the regression line from 
Equation 2 and the 95% confidence 
upper prediction interval line. The upper 
prediction interval is approximately 
1.5ºC from the dotted, best fit line. Lowering the prediction confidence below 95% would move 
the upper prediction interval closer to the fitted regression line (i.e. the dotted line).  

Prediction Confidence Distance: As the stream temperature model in Equation 2 includes flow 
as a predictor, we can release additional water to cool stream temperatures. The operations 
approach is as follows: determine reservoir releases based on baseline operating policies and 
predict the stream temperature using Equation 2. If the predicted stream temperature is above the 
target, release additional water to meet a target temperature. The regression and the prediction 
upper interval can be used to determine a strategy to determine how much additional water to 
release.  

Figure 5:  Estimated versus observed daily maxi-
mum stream temperature for the Truckee River 
at Reno, NV with 95% prediction interval upper 

limit 
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Using the regression model, Equation 
2, we predict a stream temperature, 
and its associated Gaussian distribu-
tion denoted by curve A. This is too 
warm and may adversely affect fish. 
By releasing more water, we can shift 
the distribution to the left. If the 
expected value of the distribution is 
shifted to the target temperature, 
TTarget, as shown by curve B, the 
probability of exceeding that target is 
0.5. Shifting the distribution to the 
left of the target temperature, a 
distance defined as PCD, gives a 
specified probability of exceeding the 
target temperature. Curve C shows 
the distribution that results by shifting the distribution to TNecessary, which is the target minus the 
PCD such that the distribution gives 0.05 probability of exceeding TTarget. The PCD is defined as: 

σα ),(  PCD pnt −=      Equation 4 
The empirical regression formula to predict stream temperature from flow and air temperature, 
Equation 2, is used to determine how much additional water is required to lower the temperature 
such that the probability of exceeding the target is as specified. Evaluating Equation 2 with  
TNecessary as T̂ and rearranging to solve for Q, we get the required flow at Farad: 

2

01Necessary
Required a

aTaT
Q Air −−

=     Equation 5 

Subtracting Equation 2 from Equation 5 and rearranging, we get the additional flow required: 

( )
2

Necessary
Required

ˆ

a
TT

QQ
−

−
=−     Equation 6 

To generalize, we can also define TNecessary as in Figure 6: 
PCDTT −= TargetNecessary     Equation 7 

We can replace TNecessary in Equation 6 with Equation 7 to get:  

2

Target
ˆ

a
PCDTT

Q
−

+−
=∆      Equation 8 

A lookup table was developed for each target temperature for use in the decision support system. 
For a target temperature, the table has the initial predicted temperature on one axis and the 
probability of exceedance on the other axis. The values in the table are the additional flow 
necessary to reduce the temperature to the target as calculated by Equation 8. Table 2 shows the 
additional flows needed to reach a target temperature of 22 ºC. 

 

Figure 6: Temperature reduction to meet desired 
exceedance probability 
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The table works as follows. 
The water temperature at 
Reno is predicted using 
Equation 2. This value is 
found in the first column, 
and the additional flow is 
found in the desired prob-
ability of exceedance col-
umn. Linear interpolation 
can be performed between 
rows if necessary.  

DSS DEVELOPMENT 

The rules execute the baseline operating policy to determine a flow at Farad.  Now, the stream 
temperature can be predicted and if it is too high, additional flow is released to meet the 
determined target with the desired level of confidence. Water resources managers have a number 
of variables that they can use to try different policy and release patterns as follows:  

1. Probability of exceedance (confidence level) 
2. Fish targets 
3. Climate forecasts (probability of above normal occurrence) 
4. Average volume of WQCW in storage  

Varying the probability of exceedances is a useful variable to determine how much water to 
release. Water managers might decide that on a given day they must meet the temperature target 
with a high degree of certainty and will set the probability of exceedance very low. Or, they 
might decide they only have minimal confidence in the prediction and will, therefore, not release 
as much water. Water managers can use additional information to determine the target 
temperature. This allows water managers to make use of information about the previous day’s 
stream temperature and the climate forecasts to try to avoid stream temperature violations.  The 
following sections describe the logic used to determine the stream temperature target.  

Seasonal Strategies:  To improve the use of the WQCW, seasonal strategies can be developed.  
The seasonal strategies act to modify the stream target temperature to allow for slightly higher 
temperatures under certain conditions.  The strategy uses the concept of degree-days. Each day 
of the simulation, a variable called “degree-days” is calculated as the number of degrees above 
the target for that given day. Degree-days are summed over time; each day has a cumulative 
sum, which is the current day’s degree-days plus the previous day’s cumulative degree-days. The 
degree-days are reset to zero when the stream temperature is less than or equal to the target.  The 
calculation of degree-days is a useful way to keep track of variations in temperature over time. 
We can use this policy to determine the severity of a temperature violation. If the temperature 
does not exceed the standard by very much and there were cold temperatures the day before, 
additional water is not necessary.  However, if the standard has been violated for the last four 
days, a large release may be necessary to reset the system to zero degree-days.  

Incorporating seasonal climate forecasts into WQCW release rules:  To effectively conserve 
water throughout a summer, we use a forecast from the Climate Prediction Center of the 

Table 2: Additional flow required at Farad to reduce 
maximum daily river temperature to a target of 22ºC 
  Probability of Exceedance 
  0.05 0.10 0.20 0.30 0.40 0.50 0.60

22 114 89 58 36 17 0 -17 
23 191 166 135 113 94 77 60 
24 268 243 212 190 171 154 137
25 345 320 289 267 249 231 214Pr

ed
ic

te
d 

Te
m

pe
ra

tu
re

 
(ºC

) 

26 422 397 366 344 326 308 291
Values in table are additional flow required (cfs) 
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National Oceanic and Atmospheric Administration (Climate, 2001) to modify temperature 
targets. The CPC produces forecasts for both 30 and 90-day periods in the middle of the previous 
month for the next period and for each subsequent period. The climate forecasts give the 
probability that the temperature will be above, near, or below normal. For an average year, the 
following probabilities are predicted: 33.3% above normal, 33.3% near normal, and 33.3% 
below normal. This paper uses the probability that the temperature will be above normal as the 
indicator variable. The anomaly probability can be read off the prediction map published by the 
CPC or in the absence of a map, estimates of the probability anomaly may be provided from 
other sources.  

Because we know the WQCW volume stored at any given time, we can create a variable called 
Storage and Forecast Factor (SAFF) that combines the available water and the climate forecast. 

occurance normal above ofy Probabilit
 WQCWavailable of Volume=SAFF     Equation 9 

During operations, we will calculate the actual SAFF for each day. A low SAFF indicates little 
water is available and hot weather is predicted. A high SAFF indicates plenty of WQCW is 
available and cool weather is forecasted. This variable is useful because it allows the 
quantification of available water and climate forecast. 

It is necessary to be conservative in terms of water use in the beginning of the season no matter 
what scenario is used. If the actual temperature does not follow the long-term forecasts, it is 
critical to ensure water is still available to reduce water temperatures. In the middle or end of the 
season, if the SAFF is above average, we do not need to conserve water; any temperature 
violation can be eliminated. If the SAFF is below average, we must conserve as much water as 
possible, only releasing when absolutely necessary to meet the targets. Depending on the month, 
the predicted river temperature, the SAFF and the number of accumulated degree-days, a 
different target temperature is used in the DSS. Table 3 shows the logic to select the target. T̂  is 
the predicted maximum daily river temperature at Reno and DD is the degree-days from the 
previous day. The actual targets are found in Table 1. 
 Table 3: Temperature target determination  

 June July August 
  Above 

average 
SAFF 

Below 
average 
SAFF 

Above 
average 
SAFF 

Below 
average 
SAFF 

T̂  >25 ºC and DD ≤ 4 Chronic Chronic Chronic Preferred Chronic 
T̂  > 25 ºC and DD > 4 Preferred Preferred Preferred Preferred Preferred 

24 ºC ≤ T̂  ≤ 25 ºC 
and 1 ≤ DD < 4 

Chronic Preferred Chronic Preferred Preferred 

24 ºC ≤ T̂  ≤ 25 ºC and DD < 1 Acute Chronic Acute Preferred Chronic 
24 ºC ≤ T̂  ≤ 25 ºC and DD > 4 Preferred Preferred Preferred Preferred Preferred 
22 ºC ≤ T̂  ≤ 24 ºC and DD < 4 Chronic Preferred Chronic Preferred Chronic 
22 ºC ≤ T̂  ≤ 24 ºC and DD ≤ 4 Preferred Preferred Preferred Preferred Preferred 
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RESULTS 

We applied the DSS to the period from 1980-1997. Of those years, 1988-1994 were dry years; 
the flow target was not always met during the summer. The results presented cannot be 
compared to observed river temperatures because the policies modeled in the DSS are not 
comparable to historic operations. The baseline policies in the DSS reflect the current stage of 
development of the policy rules by the USBR. These rules reflect most of the legal policies, but 
omit some policies and operations that influence releases like reservoir maintenance, operating 
errors, or human judgment. We define scenarios simulated by the DSS runs with a particular set 
of input values and operating policies. Table 4 shows the scenarios that are investigated.  
 

Table 4:  DSS scenarios 
Scenari

o 
Description 

1 Baseline USBR operations policy: 
 ! WQCW storage and spill only. 
2 Operations with: 
 ! WQCW storage and spill 
 ! WQCW releases to meet stream temperature target of 22º C 
 ! Probability of stream temperature exceedance = 0.1 
 ! No seasonal strategies 
3 Operations with: 
 ! WQCW storage and spill 
 ! WQCW releases to meet stream temperature target of 22º C 
 ! Probability of stream temperature exceedance = 0.3 
 ! No seasonal strategies 
4 Operations with: 
 ! WQCW storage and spill 
 ! WQCW releases to meet target calculated in Table 3 
 ! Probability of stream temperature exceedance = 0.3 

 ! Seasonal strategies that include degree-days and climate 
forecast 

We present results from 1994 and the total volume of WQCW used from 1988-1994. Results 
presented for each run include the maximum daily river temperature at Reno, the number of 
violations for each scenario, and the amount of water that is used in each scenario. Figure 7 
shows the maximum daily stream temperature at Reno for each scenario for 1994. Having a low 
probability of exceedance in scenario 2, leads to much lower stream temperatures, but, all of the 
water is used by the end of July.  Using a higher probability of exceedance, scenario 3, water 
lasts through the middle of August.  Finally, changing the target based on the climate forecast 
and the previous day’s stream temperature, in scenario 4, leads to higher temperatures but no 
additional violations with enough water to last until the end of the season.   
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Figure 7: Maximum daily river temperature at Reno, 1994 
In addition, it is necessary to look at the number of violations and the volume of water released.  
To have a valid comparison, we will look at the results from 1988-1994 as shown in Table 5.  
The number of violations de-
creases as we increase the 
probability of exceedance.  In 
addition, using information 
about the previous day’s 
stream temperature and climate 
forecast in scenario 4 decreases 
the number of violations.  By 
effectively managing the water it is possible to reduce the number of violations without using 
more water.   

DISCUSSION AND SUMMARY 

Discussion: The stepwise selection procedure creates a standardized process to select the most 
relevant predictors. This is useful when there are large amounts of data that appear to be related 
to the stream temperature. For summer Truckee River stream temperatures, the most significant 
predictors are flow and air temperature. The stream temperature prediction model fits the historic 
data well (R2 = 0.9) and fits the verification period relatively well. A more accurate, less simple 
model could be developed, particularly for the high temperature range. The relationships in this 
study were strongly linear therefore linear regression is adequate. In other studies, non-linear 
techniques that can capture the dependence structure are attractive and should be explored. Fur-
ther data and monitoring will help to improve the relationship to make it more certain. Less 
water will be necessary to meet the temperature targets with the desired probability of 
exceedance allowing water to be saved for the future.  

Results were presented that show that large volumes of water are necessary to meet a 
temperature target with a high degree of certainty and extreme violations may still occur if all of 
the WQCW is used. A lower degree of certainty uses less water but there is a higher probability 
that the temperature target will be exceeded. Seasonal strategies to conserve water throughout 
the summer were then presented that allow minor violations to occur. Even with seasonal 
strategies, extreme violations still occur when all of the water is used. No matter what policy or 
strategy is used, not all of the temperature violations can be avoided without additional water. 
This shows that additional water may need to be purchased.   

Table 5: Violations and WQCW released (1988-1994) 

 
Number of Violation 

(days) 
WQCW Released 

(acre-feet) 
Scenario 1 216 23000 (spill) 
Scenario 2 117 63000 
Scenario 3 94 62800 
Scenario 4 76 62600 



 12

The framework developed in this paper will perform better in daily operations because of 
additional observed data. To determine how much water to release on a given day, observed data 
from previous days is available. In addition, climate forecasts can be updated monthly. Both of 
these improve the use of the limited supply of water by including additional information. The 
structure of the prediction model lends itself to relatively easy computation of uncertainties of 
the prediction. These uncertainties provide useful information in deciding how much water to 
release. The results of the scenarios illustrate that the efficient use of water is highly dependent 
on the required confidence level to meet the targets. 

Summary:  We presented a regression model to predict daily maximum stream temperatures. A 
stepwise procedure was used to select a parsimonious set of predictors that capture as much 
variance of the stream temperature as possible. The results show that Truckee River stream 
temperatures at Reno can be predicted using a simple linear regression relationship based on 
flow and air temperature. Linear regression theory is used to quantify the prediction uncertainty. 
A DSS is created that models baseline operating policy and predicts the stream temperature 
based on these releases. Using the uncertainty calculation, a method is developed to determine 
the additional flow required to meet a target temperature with a desired level of confidence.  
Results show that this procedure will reduce the number of temperature violations.  In addition, 
seasonal strategies further decrease the number of violations without using more water. 
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