Intro and Background 0000000	Seasonal Forecasting 0000	Hidden Markov Model 0000000000	Operations Model 000000	Conclusions 0

Seasonal to Inter-Annual Streamflow Simulation and Forecasting on the Upper Colorado River Basin and Implications for Water Resources Management

> Cameron Bracken M.S. Candidate

Advised by Prof. Balaji Rajagopalan and Prof. Edith Zagona

September 21, 2011

Intro and Background	Seasonal Forecasting	Hidden Markov Model	Operations Model	Conclusions
0000000	0000	0000000000	000000	0

OUTLINE

- Intro and Background
- Seasonal Forecasts
- Hidden Markov Models
 - Annual Simulations
 - Two Year Forecasts
- Stochastic Reservoir Ops Model

Intro and Background ○●○○○○○○	Seasonal Forecasting 0000	Hidden Markov Model 0000000000	Operations Model 000000	Conclusions 0

Study Area

- Parts of five states with an area of 279,300 mi².
- Elevations ranging from 4000 to 14,200 ft.
- Nearly 80% of the streamflow in the UCRB is due to snowmelt during the Apr-July period.
- 19 important gages in the Upper Colorado River Basin.
 - Lees Ferry and three main tributaries

Intro and Background	Seasonal Forecasting	Hidden Markov Model	Operations Model	Conclusions
	0000	0000000000	000000	0

MOTIVATION

- ► The recent dry period (2000-2010) in the Upper Colorado River Basin (UCRB).
- ► Lowest inflows in Lake Powell since filling.

Intro and Background	Seasonal Forecasting	Hidden Markov Model	Operations Model	Conclusions
	0000	0000000000	000000	0

MOTIVATION

- ► The recent dry period (2000-2010) in the Upper Colorado River Basin (UCRB).
- Lowest inflows in Lake Powell since filling.

WHY IS SKILLFUL LONG LEAD FORECASTING IMPORTANT?

- Flood control
- Drought mitigation
- Municipal and agricultural water supply
- Recreation
- Trans-basin diversions
- ► Hydropower
- ► E-flows
- ▶ ...

SECOND YEAR

- Decisions for Powell are made annually
- Annual Operating Plan, August
- Project Equalization

	Lake Powell	
Elevation (feet)	Operation According to the Interim Guidelines	Live Storage (maf) ¹
3,700 3,646.26	Equalization Tier Equalize, avoid spills or release 8.23 mat	^{24.3} 16.75
1/1/12 Projection	Upper Elevation Balancing Tier ⁴ Release 2.23 maf, If Lake Mead < 1.075 feet, balance contents with a min/max release of	1/1/12 Projection
3,575	7.0 and 9.0 maf Mid-Elevation Release Tier Release 7.48 maf, if Lake Mead < 1,025 feet, release 8.23 maf	9.5
3,525	Lower Elevation	5.9
3,490	Balancing Tier Balance contents with a min/max release of 7.0 and 9.5 maf	4.0
3,370		0

Intro and Background	
00000000	

WHY IS SKILLFUL LONG LEAD FORECASTING DIFFICULT?

- Highly variable
 - Low autocorrelation
- ► Highly seasonal/ Very dependent on snowpack
 - ► Nearly 80% of flow occurs in April-July.
- Very dependent on snowpack

Intro and Background	Seasonal Forecasting	Hidden Markov Model	Operations Model	Conclusions
00000000	0000	0000000000	000000	0

CURRENT FORECASTING

- Current forecasts are made using snowpack and soil conditions (and some climate information).
 - ► ESP + SWS + expertise = Coordinated Forecast
 - First peak season forecasts made starting in January
 - No second year forecast

FORECASTING GOALS

- Skillful Seasonal Flow forecasts
- Skillful Second year forecasts
- ► Earlier lead times than current operational forecast
- Ensemble Forecasts

Seasonal Forecasting

Hidden Markov Model

Operations Model 000000 Conclusions

LARGE-SCALE CLIMATE INFLUENCE ON BASIN-SCALE HYDROLOGY

How can skillful predictions be made in the earlier in the winter/spring season when snowpack data is unavailable or incomplete?

Seasonal Forecasting

Hidden Markov Model

Operations Model

Conclusions

LARGE-SCALE CLIMATE INFLUENCE ON BASIN-SCALE HYDROLOGY

How can skillful predictions be made in the earlier in the winter/spring season when snowpack data is unavailable or incomplete? Large-scale climate variables can be used as predictors of peak season streamflow [Grantz et. al. 2005] [Regonda et. al. 2006].

Warm Phase ENSO

Intro and Background 00000000	Seasonal Forecasting ○●○○	Hidden Markov Model 0000000000	Operations Model 000000	Conclusions 0

ORIGINAL STUDY

Bracken et al. 2010 demonstrated the feasibility of simultaneously forecast many spatial locations while preserving spatial dependencies.

 Predictors are: PDSI, SST, Zonal/Meridional Winds, Geopotential Height, SWE

Intro and Background	Seasonal Forecasting	Hidden Markov Model	Operations Model	Conclusions
00000000	0000	0000000000	000000	0

DISAGGREGATION

Useful for input to other models

Intro and Background	Seasonal Forecasting	Hidden Markov Model	Operations Model	Conclusions
0000000	0000	0000000000	000000	0

SEASONAL FORECAST RESULTS: CROSS-VALIDATION

Validation mode	apr1	feb1	jan1	nov1
Leave-one	0.85	•	0.49	0.30
Retroactive	0.62	0.58	0.55	0.52

Table: Lees Ferry total flow forecast skills

(a) RPSS = 0.90 MC = 0.86

TWO YEAR FORECASTS

- 1. Poor/missing climate/snowpack information
- 2. A logical step is to use time series methods, ARMA, KNN, MC, frequency Domain Methods
- 3. Goal to make predictions of the following (second) year seasonal flow.

TWO YEAR FORECASTS

"Lees Ferry (Natural Flow) series is a time series modeler's nightmare"

- Balaji Rajagopalan, 2011

TWO YEAR FORECASTS

"Lees Ferry (Natural Flow) series is a time series modeler's nightmare"

- Balaji Rajagopalan, 2011

Seasonal Forecasting

Hidden Markov Model

Operations Model 000000 Conclusions o

HIDDEN MARKOV MODELS

Seasonal Forecasting

Hidden Markov Model

Operations Model 000000 Conclusions

HIDDEN MARKOV MODELS

- 1. General time series model
- 2. Markov process determines 'hidden' state, state dictates component distribution
- 3. A model that includes discrete states makes intuitive sense given the concept of climate regimes (such as El Niño)

Seasonal Forecasting

Hidden Markov Model

Operations Model 000000 Conclusions

HIDDEN MARKOV MODELS

Flexibility over explicit MC states.

Intro and Background	Seasonal Forecasting	Hidden Markov Model	Operations Model	Conclusions
0000000	0000	0000000000	000000	0

PARAMETERS Model Order

т

Distribution parameters

Gamma- β_i , k_i Normal - μ_i , σ_i

Transition Probabilities

$$\mathbf{\Gamma} = \left[egin{array}{ccc} \gamma_{11} & \cdots & \gamma_{1m} \ dots & \ddots & dots \ \gamma_{m1} & \cdots & \gamma_{mm} \end{array}
ight]$$

Stationary Distribution

Seasonal Forecasting

Hidden Markov Model

Operations Model

Conclusions o

LEES FERRY HMM

Model	BIC	AIC
HM2G	621.34	605.42
HM2N	620.91	604.98
HM3G	647.26	615.42
HM3N	643.73	611.89

Seasonal Forecasting

Hidden Markov Model

Operations Model 000000 Conclusions o

GLOBAL DECODING

HIDDEN MARKOV MODELS FOR SIMULATION

- HMMs are also useful for simulation (used in risk analysis).
- Alternative to AR simulations
- Can we capture longer period variability?

Intro and Background	Seasonal Forecasting	Hidden Markov Model	Operations Model	Conclusions
0000000	0000	000000000000	000000	0

SIMULATION STATISTICS

Lag 1 AC

Seasonal Forecasting

Hidden Markov Model

Operations Model 000000 Conclusions

SIMULATED SPELL LENGTHS

HMMs can capture longer spells than AR models.

Intro and Background	Seasonal Forecasting	Hidden Markov Model	Operations Model	Conclusions
0000000	0000	000000000●	000000	0

HMM FORECASTING

Model	MC	RPSS	Dry RPSS	Ave RPSS	Wet RPSS
HM2G	0.31	0.21	0.26	-0.11	0.05
HM2N	0.24	0.17	0.20	0.11	0.08
AR1	0.07	-0.03	0.07	-0.03	-0.25

Seasonal Forecasting

Hidden Markov Model 0000000000 Operations Model

Conclusions o

DECISION-SUPPORT MODEL

Seasonal Forecasting

Hidden Markov Model 0000000000 Operations Model • 0 0 0 0 0 Conclusions

DECISION-SUPPORT MODEL

- A forecast is only as good as the decisions it is used to make
- Decision support models aid in the decision making process

Intro and Background	Seasonal Forecasting	Hidden Markov Model	Operations Model	Conclusions
0000000	0000	0000000000	00000	0

CURRENT OPERATIONAL MODELING

9 Upper Basin Reservoirs

The 24 Month Study

- ► Single trace
- Outflows are input
- Deterministic output

Intro and Backgrou	nd Seasonal Forecasting 0000	Hidden Markov Model 0000000000	Operations Model	Conclusions 0

CURRENT OPERATIONAL MODELING

9 Upper Basin Reservoirs

The 24 Month Study

- ► Single trace
- Outflows are input
- Deterministic output

► Run monthly since late 90's

Midterm Operations Model

- Arbitrary number of traces
- Outflows computed on-the-fly
- Probabilistic output

► In development since Early 2009

EXPERIMENTAL SETUP

- Combine seasonal and two year forecasts
- Must run at a recent time because operations change
- Three lead times

Seasonal Forecasting

Hidden Markov Model

Operations Model

Conclusions

SAMPLE RESULTS - NAVAJO POOL ELEVATION

Boxplots - Midterm Model

SAMPLE RESULTS - FLAMING GORGE OUTFLOW

Boxplots - Midterm Model

Seasonal Forecasting

Hidden Markov Model

Operations Model ○○○○○● Conclusions

SAMPLE RESULTS - POWELL POOL ELEVATION

Intro and Background	Seasonal Forecasting	Hidden Markov Model	Operations Model	Conclusions
0000000	0000	0000000000	000000	•

Intro and Background	Seasonal Forecasting	Hidden Markov Model	Operations Model	Conclusions
00000000	0000	0000000000	000000	•

 Long lead seasonal forecast model using large scale climate info

- Long lead seasonal forecast model using large scale climate info
- Hidden Markov model for simulation and second year forecasts
 - Persistence is not the same as autocorrelation

- Long lead seasonal forecast model using large scale climate info
- Hidden Markov model for simulation and second year forecasts
 - Persistence is not the same as autocorrelation
- Forecasts combined as input to a new probabilistic operations model for the Colorado River Basin