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OUTLINE

I Intro and Background
I Seasonal Forecasts
I Hidden Markov Models

I Annual Simulations
I Two Year Forecasts

I Stochastic Reservoir Ops Model
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STUDY AREA
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I Parts of five states with an
area of 279,300 mi2.

I Elevations ranging from
4000 to 14,200 ft.

I Nearly 80% of the
streamflow in the UCRB is
due to snowmelt during
the Apr-July period.

I 19 important gages in the
Upper Colorado River
Basin.

I Lees Ferry and three
main tributaries
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MOTIVATION

I The recent dry period (2000-2010) in the Upper Colorado
River Basin (UCRB).

I Lowest inflows in Lake Powell since filling.
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WHY IS SKILLFUL LONG LEAD FORECASTING

IMPORTANT?

I Flood control
I Drought mitigation
I Municipal and agricultural water supply
I Recreation
I Trans-basin diversions
I Hydropower
I E-flows
I ...
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SECOND YEAR

I Decisions for Powell
are made annually

I Annual Operating
Plan, August

I Project Equalization

Lake Powell & Lake Mead
Operational Diagrams and Projected Conditions1

1,134.12 14.78
1/1/12 

Projection

1/1/12 
Projection

3,646.26 16.75
1/1/12 

Projection

1/1/12 
Projection

1 January 1, 2012 , projections are based on the August 2011 
24-Month Study.
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WHY IS SKILLFUL LONG LEAD FORECASTING

DIFFICULT?
I Highly variable

I Low autocorrelation
I Highly seasonal/ Very dependent on snowpack

I Nearly 80% of flow occurs in April-July.
I Very dependent on snowpack
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CURRENT FORECASTING
I Current forecasts are made using snowpack and soil

conditions (and some climate information).
I ESP + SWS + expertise = Coordinated Forecast
I First peak season forecasts made starting in January
I No second year forecast
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FORECASTING GOALS

I Skillful Seasonal Flow forecasts
I Skillful Second year forecasts
I Earlier lead times than current operational forecast
I Ensemble Forecasts

Year 0 Year 1

Jan-Dec{Nov1
{ Apr-Jul

Feb1 {Year 2

Nov-Mar
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LARGE-SCALE CLIMATE INFLUENCE ON

BASIN-SCALE HYDROLOGY

How can skillful predictions be made
in the earlier in the winter/spring
season when snowpack data is
unavailable or incomplete?

Large-scale climate variables can be
used as predictors of peak season
streamflow [Grantz et. al. 2005]
[Regonda et. al. 2006].
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ORIGINAL STUDY

Bracken et al. 2010 demonstrated the feasibility of
simultaneously forecast many spatial locations while
preserving spatial dependencies.

Nov 1

Jan 1

Feb 1

April 1

Lead Times

Framework

April

May

June

July

Forecast Times

I Predictors are: PDSI, SST, Zonal/Meridional Winds,
Geopotential Height, SWE
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DISAGGREGATION
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Lees
Ferry

April 1 Site 1

May 1 Site 1

June 1 Site 1

July 1 Site 1

April 1 Site 20

May 1 Site 20

June 1 Site 20

July 1 Site 20

Useful for input to other models
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SEASONAL FORECAST RESULTS: CROSS-VALIDATION

Validation mode apr1 feb1 jan1 nov1

Leave-one 0.85 0.74 0.49 0.30
Retroactive 0.62 0.58 0.55 0.52

Table: Lees Ferry total flow forecast skills
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(a) RPSS = 0.90 MC = 0.86
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(c) RPSS = 0.41 MC = 0.35
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TWO YEAR FORECASTS

1. Poor/missing climate/snowpack information
2. A logical step is to use time series methods, ARMA, KNN,

MC, frequency Domain Methods
3. Goal to make predictions of the following (second) year

seasonal flow.

Year 0 Year 1

Jan-Dec{Nov1
{ Apr-Jul

Feb1 {Year 2

Nov-Mar
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TWO YEAR FORECASTS

“Lees Ferry (Natural Flow) series is a time series modeler’s
nightmare”

- Balaji Rajagopalan, 2011
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HIDDEN MARKOV MODELS

Pr(Ct|C(t−1)) = Pr(Ct|Ct−1), t = 2, 3, ...

Pr(Xt|X(t−1), C(t)) = Pr(Xt|Ct), t ∈N

30 HMMs: DEFINITION AND PROPERTIES

Figure 2.1, gives a clear indication that the observations are serially de-
pendent. One way of allowing for serial dependence in the observations
is to relax the assumption that the parameter process is serially indepen-
dent. A simple and mathematically convenient way to do so is to assume
that it is a Markov chain. The resulting model for the observations is
called a Poisson–hidden Markov model, a simple example of the class of
models discussed in the rest of this book, namely hidden Markov models
(HMMs).

We shall not give an account here of the (interesting) history of such
models, but two valuable sources of information on HMMs that go far
beyond the scope of this book, and include accounts of the history, are
Ephraim and Merhav (2002) and Cappé, Moulines and Rydén (2005).

2.2 The basics

2.2.1 Definition and notation

X1 X2 X3 X4

C1 C2 C3 C4

Figure 2.2 Directed graph of basic HMM.

A hidden Markov model {Xt : t ∈ N} is a particular kind of
dependent mixture. With X(t) and C(t) representing the histories from
time 1 to time t, one can summarize the simplest model of this kind by:

Pr(Ct | C(t−1)) = Pr(Ct | Ct−1), t = 2, 3, . . . (2.1)

Pr(Xt | X(t−1),C(t)) = Pr(Xt | Ct), t ∈ N. (2.2)

The model consists of two parts: firstly, an unobserved ‘parameter pro-
cess’ {Ct : t = 1, 2, . . . } satisfying the Markov property, and secondly
the ‘state-dependent process’ {Xt : t = 1, 2, . . . } such that, when Ct is
known, the distribution of Xt depends only on the current state Ct and
not on previous states or observations. This structure is represented by
the directed graph in Figure 2.2. If the Markov chain {Ct} has m states,
we call {Xt} an m-state HMM. Although it is the usual terminology in
speech-processing applications, the name ‘hidden Markov model’ is by
no means the only one used for such models or similar ones. For instance,
Ephraim and Merhav (2002) argue for ‘hidden Markov process’, Leroux

© 2009 by Walter Zucchini and Iain MacDonald

1. General time series model
2. Markov process determines ‘hidden’ state, state dictates

component distribution
3. A model that includes discrete states makes intuitive sense

given the concept of climate regimes (such as El Niño)
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HIDDEN MARKOV MODELS

THE BASICS 31

and Puterman (1992) use ‘Markov-dependent mixture’, and others use
‘Markov-switching model’ (especially for models with extra dependencies
at the level of the observations Xt), ‘models subject to Markov regime’,
or ‘Markov mixture model’.

Markov chain

state 1 state 2
δ1 = 0.75 δ2 = 0.25

0.70.3
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| | | | |
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31.1
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26.2

19.7

Figure 2.3 Process generating the observations in a two-state HMM. The chain
followed the path 2,1,1,1,2,1, as indicated on the left. The corresponding state-
dependent distributions are shown in the middle. The observations are gener-
ated from the corresponding active distributions.

The process generating the observations is demonstrated again in Fig-
ure 2.3, for state-dependent distributions p1 and p2, stationary distribu-

tion δ = (0.75, 0.25), and t.p.m. Γ =

(
0.9 0.1
0.3 0.7

)
. In contrast to the

case of an independent mixture, here the distribution of Ct, the state at
time t, does depend on Ct−1. As is also true of independent mixtures,
there is for each state a different distribution, discrete or continuous.

We now introduce some notation which will cover both discrete- and
continuous-valued observations. In the case of discrete observations we
define, for i = 1, 2, . . . , m,

pi(x) = Pr(Xt = x | Ct = i).

That is, pi is the probability mass function of Xt if the Markov chain
is in state i at time t. The continuous case is treated similarly: there
we define pi to be the probability density function of Xt if the Markov

© 2009 by Walter Zucchini and Iain MacDonald

Flexibility over explicit MC states.
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PARAMETERS
Model Order

m

Distribution parameters

Gamma- βi, ki
Normal - µi, σi

Transition Probabilities

Γ =




γ11 · · · γ1m
...

. . .
...

γm1 · · · γmm




Stationary Distribution

δ
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LEES FERRY HMM
D
en

si
ty

5 10 15 20 25

0
.0
0

0
.0
4

0
.0
8

δ = [0.8, 0.2]

D
en

si
ty

5 10 15 20 25

0
.0
0

0
.0
4

0
.0
8

δ = [0.79, 0.21]

Flow [MAF]

Model BIC AIC

HM2G 621.34 605.42
HM2N 620.91 604.98
HM3G 647.26 615.42
HM3N 643.73 611.89
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GLOBAL DECODING
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HIDDEN MARKOV MODELS FOR SIMULATION

I HMMs are also useful for simulation (used in risk
analysis).

I Alternative to AR simulations
I Can we capture longer period variability?
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SIMULATION STATISTICS

HM2G HM2N AR1
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SIMULATED SPELL LENGTHS
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HMMs can capture longer spells than AR models.
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HMM FORECASTING

Model MC RPSS Dry RPSS Ave RPSS Wet RPSS

HM2G 0.31 0.21 0.26 −0.11 0.05
HM2N 0.24 0.17 0.20 0.11 0.08

AR1 0.07 −0.03 0.07 −0.03 −0.25
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DECISION-SUPPORT MODEL

I A forecast is only as good as the decisions it is used to
make

I Decision support models aid in the decision making
process



Intro and Background Seasonal Forecasting Hidden Markov Model Operations Model Conclusions

DECISION-SUPPORT MODEL

I A forecast is only as good as the decisions it is used to
make

I Decision support models aid in the decision making
process



Intro and Background Seasonal Forecasting Hidden Markov Model Operations Model Conclusions

CURRENT OPERATIONAL MODELING

9 Upper Basin Reservoirs

The 24 Month Study
I Single trace
I Outflows are input
I Deterministic output

I Run monthly since late 90’s
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CURRENT OPERATIONAL MODELING

9 Upper Basin Reservoirs

The 24 Month Study
I Single trace
I Outflows are input
I Deterministic output

I Run monthly since late 90’s

Midterm Operations Model
I Arbitrary number of traces
I Outflows computed on-the-fly
I Probabilistic output

I In development since Early 2009
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EXPERIMENTAL SETUP

I Combine seasonal and two year forecasts
I Must run at a recent time because operations change
I Three lead times
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EXPERIMENTAL SETUP
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SAMPLE RESULTS - NAVAJO POOL ELEVATION
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(a)

Blue - Observed
Green - 24MS
Purple - Control Run
Boxplots - Midterm Model
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SAMPLE RESULTS - FLAMING GORGE OUTFLOW
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Boxplots - Midterm Model
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SAMPLE RESULTS - POWELL POOL ELEVATION
Po

ol
 E

le
va

ti
on

 [f
ee

t]

36
00

36
50

37
00

Apr 08 Aug 08 Dec 08 Apr 09 Aug 09 Dec 09 Apr 10 Aug 10

(c)

Blue - Observed
Green - 24MS
Purple - Control Run
Boxplots - Midterm Model



Intro and Background Seasonal Forecasting Hidden Markov Model Operations Model Conclusions

CONCLUSIONS

I Long lead seasonal forecast model using large scale
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I Persistence is not the same as autocorrelation

I Forecasts combined as input to a new probabilistic
operations model for the Colorado River Basin
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