CRSS-Lite

An Annual Timestep Model for the Colorado River Stakeholders

Carly S. Jerla CADSWES University of Colorado

Introduction

• Motivation

- Expressed need for an quick and accurate tool to be used for policy evaluation
- Background
 - Stakeholders interviewed for user requirements
 - Stakeholders and Reclamation part of development process
- Objectives
 - Fast and accurate
 - Easy to use

Major Features of Lite

- Annual Timestep
 - Objects require annual input and dispatch annually
- Data Requirements
 - Monthly and annual hydrologic data
 - Annual demand data with monthly percent for disagg
- Lower Basin Model
 - Lower Basin detail identical to CRSS (4 reservoirs, 46 diversions, 10 reach objects)
- Performance
 - Approximately 75% reduction in runtime
 - Very accurate

Major Features of Lite

- Reservoir Operational Policy
 - Rules perform monthly computations due to inherently monthly nature of rules such as Equalization and Mead Flood Control
 - Monthly storages for Mead and Powell are saved on each reservoir
 - Mead Flood Control implemented as user method on computational subbasin object
- Scheduling Rules
 - Normal, Shortage and Surplus rules perform annual computations
- Expression Slots for Multiple Runs

Interpreting & Viewing Model Output

- Many tools available to analyze model results
 - System Control Table (SCT): View current state of the model in compact, easy way
 - Data Management Interface (DMI) Routines, Output Manager and Individual Slot Export as a way to transfer model results to another application for analysis
 - Snapshots & Plotting: powerful tool for analysis within the model

Demonstration

- Increase 80P1050 Shortage Trigger
 - Run first with statistically determined triggers
 - Run twice more increasing trigger to 1150 ft
 & 1180 ft
 - Using Snapshot & Plotting tools, view changes in Mead's pool elevation
 - Using Model Run Analysis, view occurrence of shortages