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-- Upper BoundUpper Bound
-- Lower BoundLower Bound



Basic Optimization ApproachBasic Optimization Approach

Optimization based on 1 week model: Optimization based on 1 week model: 
current value plus future valuecurrent value plus future value
objobj: : 

Max avoided cost + future value Max avoided cost + future value 
Existing Model: future value is input (from Existing Model: future value is input (from 
VPS)VPS)
New Model: future value based on New Model: future value based on 
alternative hydrologic scenarios for future alternative hydrologic scenarios for future 
weeksweeks



Value of Project StorageValue of Project Storage

One curve produced per reservoirOne curve produced per reservoir
No interaction between reservoirs is No interaction between reservoirs is 
consideredconsidered
System wide operation so clearly there is System wide operation so clearly there is 
reservoir interactionreservoir interaction
-- ex: One very high reservoir, rest very lowex: One very high reservoir, rest very low

Operation decisions very different Operation decisions very different 



Value of water vs. Storage
(exaggerated curve, not to scale)
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Stochastic Nature of InflowStochastic Nature of Inflow

Because the future value of water Because the future value of water 
depends on uncertain future hydrologic depends on uncertain future hydrologic 
inflow, the model is by nature stochasticinflow, the model is by nature stochastic
Optimizing reservoir scheduling with Optimizing reservoir scheduling with 
regard to uncertainty in inflows is a regard to uncertainty in inflows is a 
Stochastic Optimization Stochastic Optimization problemproblem



Previous ResearchPrevious Research

Two Approaches have historically Two Approaches have historically 
dominated this classification:dominated this classification:
1.  Stochastic Dynamic Programming 1.  Stochastic Dynamic Programming 
(SDP)(SDP)
2.  Stochastic Programming with Recourse 2.  Stochastic Programming with Recourse 
(SPR)(SPR)



SDP (cont.)SDP (cont.)
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SDP (cont.)SDP (cont.)

Suppose X = 20 intervals of Suppose X = 20 intervals of discretizationdiscretization

Computationally infeasible for even small Computationally infeasible for even small 
reservoir systemsreservoir systems

1 reservoir  ⇒ 202 = 400 states
2 reservoirs ⇒ 204 = 160 thousand states
3 reservoirs ⇒ 206 = 64 million states
4 reservoirs ⇒ 208 = 25 billion states
5 reservoirs ⇒ 2010 = 10 trillion states



Alternative: Stochastic Programming Alternative: Stochastic Programming 
with Recourse (SPR)with Recourse (SPR)

Modeling under uncertaintyModeling under uncertainty
Maximizing over a number of scenariosMaximizing over a number of scenarios
Maximizing current period plus expected value Maximizing current period plus expected value 
of future periods.of future periods.
Avoids the curse of dimensionality by Avoids the curse of dimensionality by 
constructing an approximation of the future constructing an approximation of the future 
value function from shadow price information value function from shadow price information 
gathered from the linear program (gathered from the linear program (CUTS)CUTS)
a.k.a. a.k.a. Bender’s DecompositionBender’s Decomposition



SPR tree within framework of SPR tree within framework of 
this researchthis research

t = 1                 t = 2                                       t = 3



SPR: Benders Decomposition SPR: Benders Decomposition 
ApproachApproach

Algorithm decomposes into a collection of Algorithm decomposes into a collection of 
subproblemssubproblems by stage and scenarioby stage and scenario
Each Each subproblemsubproblem requires initial reservoir requires initial reservoir 
storagesstorages
After solving After solving subproblemsubproblem::
-- pass ending storage values to the next scenariopass ending storage values to the next scenario
-- pass “cuts” to previous scenariopass “cuts” to previous scenario

Solved iteratively by “tree traversing strategies” Solved iteratively by “tree traversing strategies” 
until a first stage solution is converged uponuntil a first stage solution is converged upon



SubproblemSubproblem Objective FunctionObjective Function
sub (sub (ωt)

Subject to:

where 

ct = a vector of first period objective function coefficients

xt = a vector of first period decision variables

ωt = scenario index

Pω = Probability of particular scenario

fω =  future value under scenario ω

π = dual price from stage t+1 solution

Sr = Storage at end of current stage (variable)

Sr
’= Storage at beginning of next stage that produced this cut
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Estimate of stage 2 objective functionEstimate of stage 2 objective function

Storage at end of Stage 1
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Maximize combined stage 1 and stage 2 Maximize combined stage 1 and stage 2 
objective functionobjective function
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SPR ChallengeSPR Challenge

Size of scenario tree grows exponentially Size of scenario tree grows exponentially 
as number of stages increasesas number of stages increases
i.e. Problem with three scenarios per stagei.e. Problem with three scenarios per stage

2nd Stage:3 scenarios2nd Stage:3 scenarios
3rd Stage:9 scenarios3rd Stage:9 scenarios
4th Stage:27 scenarios4th Stage:27 scenarios
5th Stage:81 scenarios5th Stage:81 scenarios



Network Stochastic Programming Network Stochastic Programming ––
Main IdeaMain Idea

Alternative Representation of SPR treeAlternative Representation of SPR tree
Use hydrologic state to reduce trees to network Use hydrologic state to reduce trees to network 
of states of states 

Future value at a state is a function of storage but Future value at a state is a function of storage but 
otherwise independent of path: increased cut sharingotherwise independent of path: increased cut sharing

Intentionally simple definition of state (not focus Intentionally simple definition of state (not focus 
of this research)of this research)

Function of historical flows for each weekFunction of historical flows for each week
Historical flow mapped mapped into exactly one state Historical flow mapped mapped into exactly one state 
for each weekfor each week
Transitional arc between each stateTransitional arc between each state

TVA uses a state definition concept for TVA uses a state definition concept for 
forecastingforecasting



Correlated multistage alternate Correlated multistage alternate 
representation for stochastic modelrepresentation for stochastic model

correlated, alternate representation
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IterationIteration

Determined initial storages on first forward Determined initial storages on first forward 
passpass
Solve last stage and pass cuts to the Solve last stage and pass cuts to the 
preceding stagepreceding stage
Continue procedure backward and Continue procedure backward and 
forward, adding cuts after each problem forward, adding cuts after each problem 
solvedsolved
End when solution convergesEnd when solution converges



ConvergenceConvergence

Convergence requires and upper bound Convergence requires and upper bound 
(UB), lower bound (LB), and Gap (UB), lower bound (LB), and Gap 
Tolerance.Tolerance.
Program terminates when bounds are Program terminates when bounds are 
within the gap tolerance:within the gap tolerance:

UB UB –– LB <= Gap ToleranceLB <= Gap Tolerance



Visual Representation of lower Visual Representation of lower 
boundbound
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StatusStatus
In testing now with TVA dataIn testing now with TVA data

-- AccomplishedAccomplished::
44--week Modelweek Model
Generate Cuts for single reservoirGenerate Cuts for single reservoir
Single ObjectiveSingle Objective

-- To DoTo Do::
Longer Model (6 Longer Model (6 –– 8 weeks)8 weeks)
Cuts for all storage reservoirs (UB)Cuts for all storage reservoirs (UB)
Compute a lower boundCompute a lower bound
Multiple ObjectiveMultiple Objective

-- Future ImplementationFuture Implementation
Proof of ConceptProof of Concept
No GUI representationNo GUI representation
Not EfficientNot Efficient



SummarySummary

NSP provides a Stochastic Optimization NSP provides a Stochastic Optimization 
Solution Solution 
Avoids the problems historically Avoids the problems historically 
associated with SDP and SPRassociated with SDP and SPR
With appropriate enhancement could be a With appropriate enhancement could be a 
very valuable RiverWare toolvery valuable RiverWare tool
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