

USACE – Overview of Modeling Approach and Enhancements

RiverWare User Group Meeting August 13-14, 2008

David Neumann

Outline

Summary of methods and how they work together

New functionality

- Cumulative Flow Disagg (previous presentation)
- Iterative mode and yield study (later presentation)
- Alternative routing coefficients
- Initialization for routing
- Upcoming Work

Overview

Methods and rule functions are used to replace the approach used by USACE in the SUPER program

- Flood Control
 - Surcharge Release
 - Regulation Discharge
 - Flood Control Releases

- Conservation Operations
 - Low Flow / Demand Releases
 - Reservoir Diversions
 - Reach Diversions
- Hydropower

Surcharge

Mandatory releases made regardless of downstream channel constraints

Pool elevation exceeds top of the flood pool

Ensures safety of the structure

Rule: Set Surcharge Release Flag (S) on Res.Outflow slot of each Reservoir in Computational Subbasin

Simulation: Surcharge releases and Outflows are computed and set by the resulting dispatch method for entire forecast period

Regulation Discharge

Methods determine the maximum flow permitted at the control point and empty space available in the channel based on the current flow

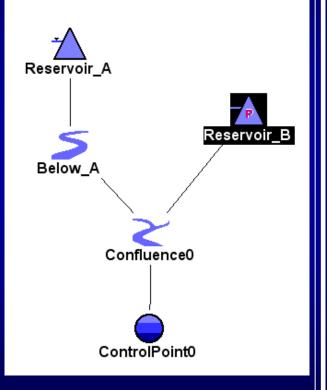
Rule: Set Regulation Discharge (G) Flag on all Control Point.RegDischargeCalc slots

Simulation: Calculate Regulation Discharge and dependent methods; removes G flag; does not reset any Outflows

Flood Control

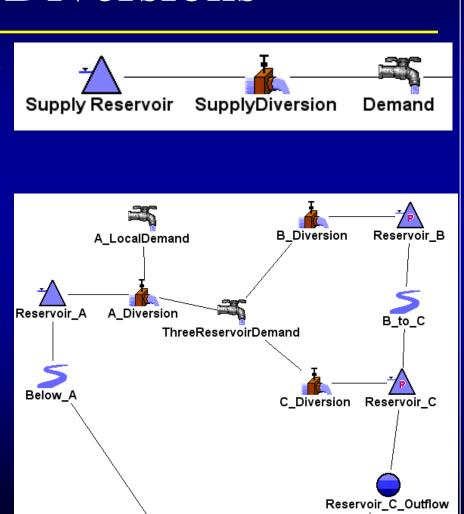
Determine additional flood control releases for each reservoir in the subbasin

Respect downstream channel constraints


Balance reservoir storages to extent possible

Rule: FloodControl(): Function executes Flood Control Method on subbasin and the calling rule sets Reservoir.FloodRelease and Res.Outflow on subbasin (outflow = surcharge release + flood release)

Simulation: Objects dispatch and results propagate downstream


Conservation Operations: Low Flow / Demand Releases

- Flow requirement on a Control Point represents environmental flows or demand
- Determine releases to meet a downstream flow requirement
- Reservoirs are considered in the order of highest operating level
- Rule: MeetLowFlowRequirement(): Execute Low Flow Release Method on computational subbasin and rule sets reservoirs Low Flow Release slots and Outflow slots
- Simulation: Objects dispatch and results propagate downstream

Conservation Operations: Reservoir Diversions

- Water is diverted directly out of a reservoir to meet demands
- Modeled using a Diversion and Water User
- One reservoir can meet many demands
- A demand can be served by many reservoirs
- Rule: ComputeReservoirDiversions(): Execute method on subbasin and set Water Users' Incoming Available Water subslots and Diversion objects' Multi Outflow slots Simulation: Reservoirs, Water Users, and Diversion objects dispatch.

How does this all work together:

Rules execute in following order once per ts:

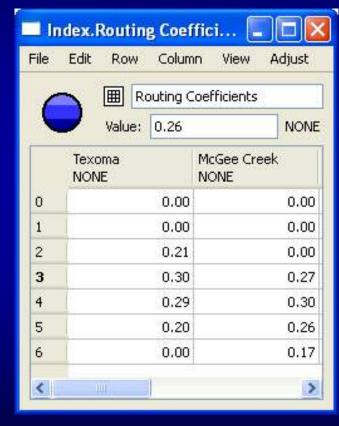
- Surcharge Release
 Mandatory Releases
- Regulation Discharge Find Empty Space
- Flood Control Releases Additional Flood Releases
- Low Flow / Demand releases } Increase Outflow
- Reservoir Diversions } Divert water from Res.
- Hydropower Increase Outflow

Note, reach diversions and losses happen as objects dispatch.

Recent Enhancements

 Calculation of incremental flows from cumulative – see previous presentation
 Iterative Mode MRM / Yield Study

 Integer Index Slots
 Yield Study Algorithms
 Presented in detail later


Alternative Routing

- During high flow periods, overbank flow causes invalid routing coefficients.
- New Reach routing method: Variable Step Response
- Reach uses Inflows to select step coefficients

ile	Edit Row		/iew Adjust	
9	< 🔳 🛛	ariable Lag Co	efficients	
	Value:	0.2162	NON	
	0 cfs NONE	80000 cfs NONE	150000 cfs NONE	
0	0.1111	0.1112	0.0743	
1	0.2964	0.2965	0.2162	
2	0.2963	0.2966	0.2558	
3	0.1646	0.1648	0.1879	
4	0.0768	0.0769	0.1181	
5	0.0329	0.0330	0.0686	
6	0.0134	0.0134	0.0379	
7	0.0053	0.0051	0.0203	
8	0.0020	0.0017	0.0106	
9	0.0008	0.0006	0.0055	
10	0.0003	0.0002	0.0027	
11	0.0001	0.0000	0.0012	
12	0.0000	0.0000	0.0006	
13	0.0000	0.0000	0.0003	

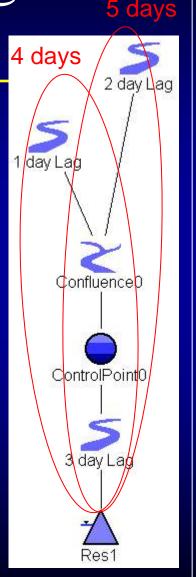
Alternative Routing – USACE methods

- USACE methods also needed to be enhanced
- Flood control uses slots on CP to specify how water routes from each res to a given CP
- These were static now they are generated at each timestep

Alternative Routing - USACE methods

- Methods added to Computational Subbasin to specify objects of interest and methods to CP to hold slots
- On each CP, the method searches upstream and uses
 - start of timestep flows and
 - coefficients on reaches

to create aggregate coefficients from a CP to each upstream Reservoirs


New coefficients are stored on temp slots

Alternative Routing – Flood Control Modifications

 Flood Control function now uses temp aggregate coefficients in all calculations
 Note, in simulation the reaches still use the coefficients based on inflows – conservation of mass

Initialization for Routing -Background

- USACE methods required that all objects can solve on first timestep
- Because of routing, user has to input presimulation data. Difficulties include:
 - Time consuming to calculate number of timesteps needed
 - Which slots need data?
 - Time consuming to enter data
- Hard to move model forward in time
- Approach: New method on Computational Subbasin "Initialize Flow Slots for Routing"

Initialization steps

RiverWare searches through the subbasin and determines:

1. Slots that need to be set:

- Reach, Confluence, Gage, Agg Reach: Inflows (if not linked)
- Reservoir, Inline Power, Pipeline and Inline Pump: Outflows (if linked)
- Reach: Local Inflows, Diversion, and Return Flows (if linked)

2. Number of pre-simulation timesteps required for each object.slot of interest. Each object searches routing reaches downstream to bottom of subbasin. E.g. 3 day lag = 3 timesteps

- 3. The value to set on each slot. User methods are available to backcast:
 - Zero
 - Initial Value First user input
- Finally, the method sets the value on the slot

e Edit	Slots	Aggregation Vie	ew Config DMI	Run Diagnostics	Go To				
1 🖬] 🗗 🔟 🗠 [8 💰 🕨 🔳		I T B M	D R 0	cfs	June 30, 1956	\$
Series Slot	s :	Scalar Slots Other	r Slots						
Timeste	F	Broken Bow ,Outflow cfs	Caddo .Outflow cfs	Cooper .Outflow cfs	Dequeen .Outflow cfs	Dierks .Outflow cfs	Gillham .Outflow cfs	Hugo .Outflow cfs	^
6/21/56	Thu			0.00				20.00	
6/22/56	Fri			0.00				20.00	
6/23/56	Sat		0.00	0.00				20.00	
6/24/56	Sun		0.00	0.00			0.00	20.00	
6/25/56	Мог		0.00	0.00			0.00	20.00	
6/26/56	Tue		0.00	0.00		0.00	0.00	20.00	
6/27/56	Wei	300.00	0.00	0.00		0.00	0.00	20.00	
6/28/56	Thu	300,00	0.00	0.00	100.00	0.00	0.00	20.00	
6/29/56	Fri	300.00	0.00	0.00	100.00	0.00	0.00	20.00	
6/30/56	Sat	300.00	0.00	0.00	100.00	0.00	0.00	20.00	
7/1/56	Sun	380.72	0.00	0.00	100.00	0.00	0.00	9.60	
7/2/56	Mor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	*

```
Dierks.Outflow [@ 6/27/56] -- Volume: 0.00 [ft3]
```

1 value: 0.00 [cfs]

Multiple subbasins can be defined

- Backcast a value for certain object.slots (e.g. Res.Outflow)
- Assume a value of zero for others (e.g. Reach.Local Inflow)

Upcoming Enhancements

- Performance work
- Export/Import plot configurations
- Post processing to create monthly reports
- Create formatted printable text file of objects, methods, tables, notes in model
- Clear values imported by DMI
- Extend riverwareDB for data objects
- User Guide for USACE methods