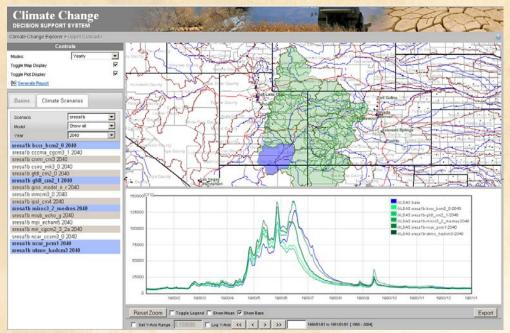
global science solutions

RIVERSIDE


Use of RiverWare for Climate Change Scenarios

Jay Day Marc Baldo James Van Shaar

Climate Change Decision Support System

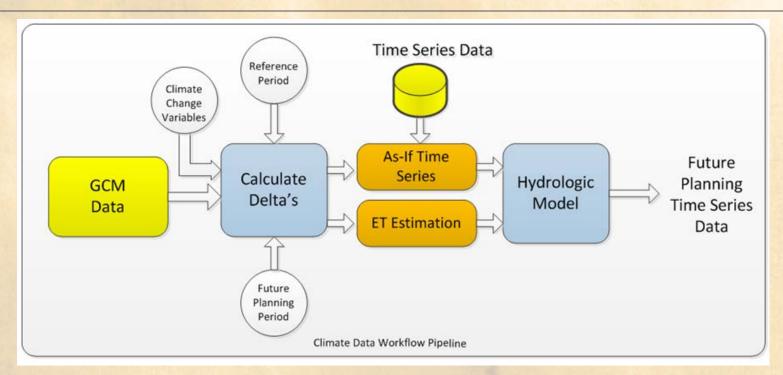
- A web-based decision support system to demonstrate the effect of climate change on water availability
- Water Managers need cost-effective tools to explore future climate scenarios and test adaptation alternatives

V RIVERSIDE

Scenario

How the System Works

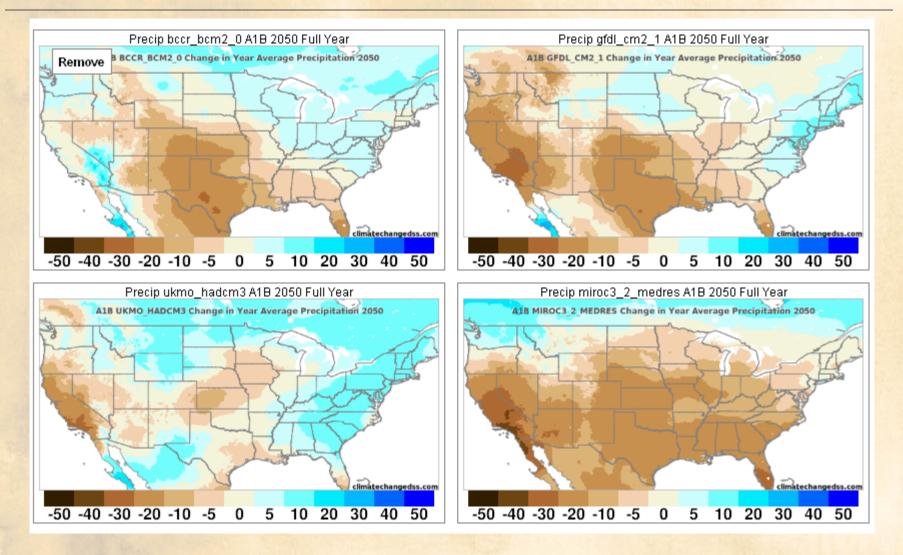
The user selects from which scenarios to investigate.


		De-select all runs	None	None	None	
GCM Model Name		Select all runs	All	All	All	Scenario A1B, A2,
		Climate Models:	Emissions Path: A1b	Emissions Path: A2	Emissions Path: B1	B1)
		bccr_bcm2_0				
		cccma_cgcm3_1				
		cnrm_cm3				
		csiro_mk3_0				
		gfdl_cm2_0				Dura Al
		gfdl_cm2_1				Runs – At least one
		giss_model_e_r				run per
		enario is	defined by	GCM resu	Its reflecting	

Step 1.2: Emissions Scenarios, Climate Models and Runs

- A scenario is defined by GCM results reflecting emissions conditions.
- The downscaled GCM data for future conditions are compared with historical conditions to calculate a shift (delta) in temperature and precipitation conditions.

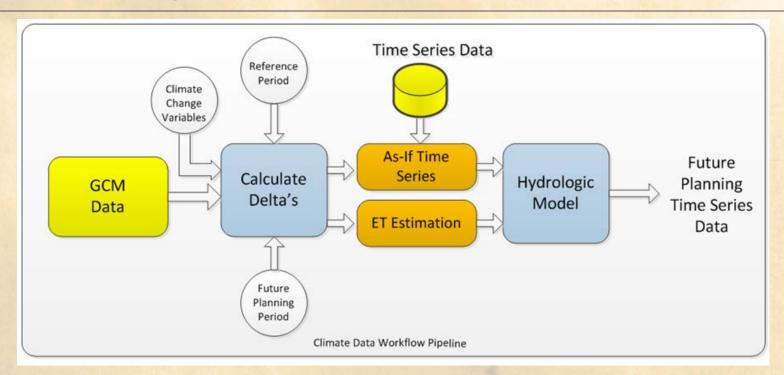
How the System Works



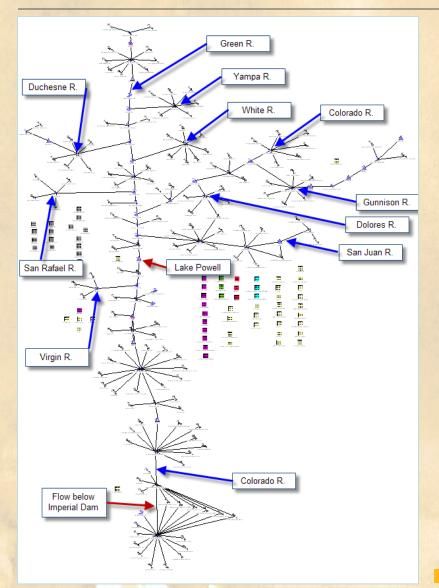
- Historical time series data is shifted using monthly temperature and precipitation deltas
- Potential ET is adjusted using monthly temperature deltas

Data Display: Projected APrecip. for 4 GCMs

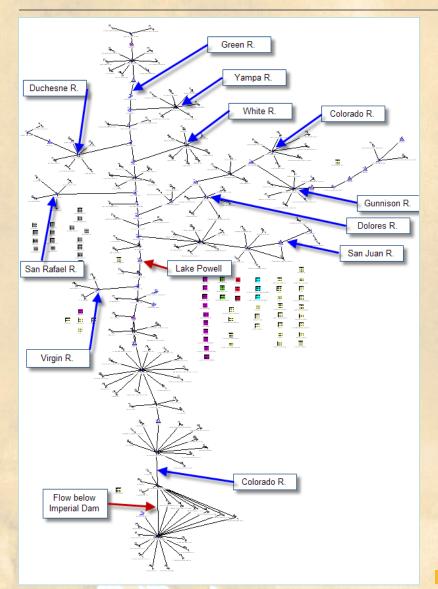
Data Display: Monthly Variability in Δs



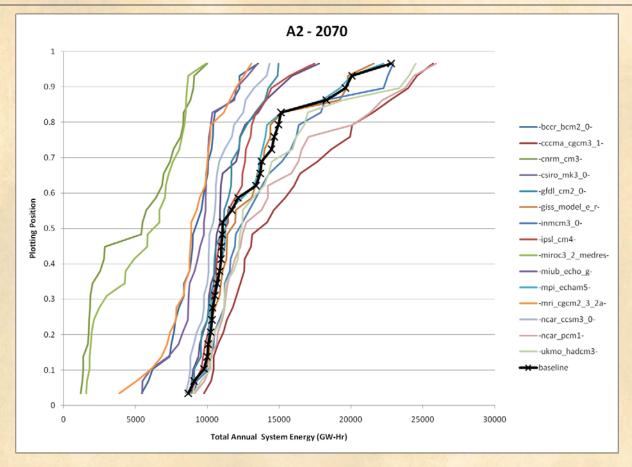
CMMG1 sresa1b-bccr_bcm2_0-2070 CMMG1 sresa1b-cccma_cgcm3_1-2070 CMMG1 sresa1b-cnrm_cm3-2070 CMMG1 sresa1b-csiro_mk3_0-2070 CMMG1 sresa1b-gfdl_cm2_0-2070 CMMG1 sresa1b-gfdl_cm2_1-2070 CMMG1 sresa1b-giss_model_e_r-2070 CMMG1 sresa1b-inmcm3_0-2070 CMMG1 sresa1b-ipsl_cm4-2070 CMMG1 sresa1b-miroc3_2_medres-2070 CMMG1 sresa1b-miub_echo_g-2070 CMMG1 sresa1b-mpi echam5-2070 CMMG1 sresa1b-mri_cgcm2_3_2a-2070 CMMG1 sresa1b-ncar_cosm3_0-2070 CMMG1 sresa1b-ncar_pcm1-2070 CMMG1 sresa1b-ukmo_hadom3-2070


How the System Works

- These time series drive existing NWS watershed-scale hydrologic models.
- Models directly relate altered temperature and precipitation regimes to changes in snowpack, soil moisture, and streamflow.


Regulation Modeling


- Hydrologic results are applied to an existing regulation model.
- Results are analyzed.


CRSS Integration

- DMIs
- Data:
 - Extension of Elevation
 Volume / Area Tables
 - Extension of Stage
 Flow Tailwater Table
 - Tailwater Table
- RiverWare Control Language
- TSTool and Python



Sample Results



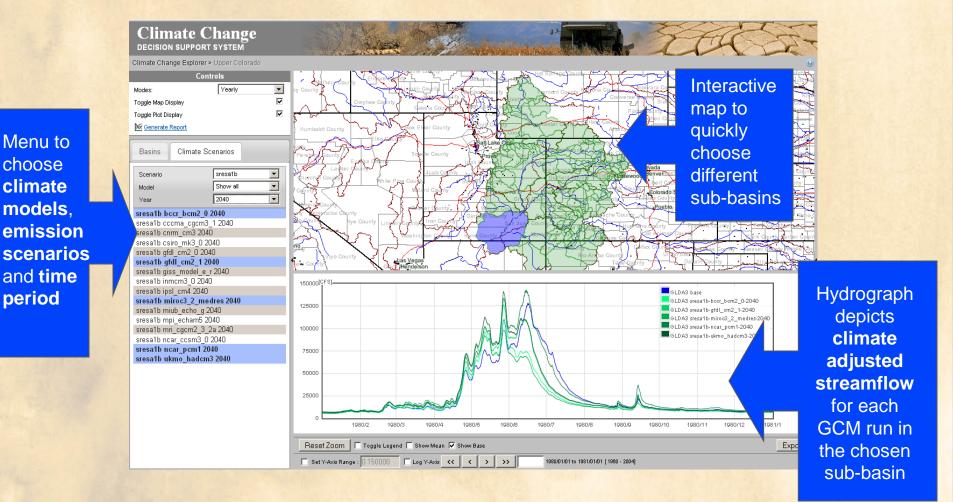
Scenario A2 – 2070 Total Annual System Energy

Sample Results

Scenario A2 – 2070 Average Annual Undepleted Flow in the Upper Colorado Basin

Sample Results

	Ratio: Scenario/Baseline								
	System	Powell	Imperial	System	System	System			
	Inflow	Q	Q	Storage	Evap	Energy			
a22040					-				
-bccr_bcm2_0-	0.79	0.76	0.65	0.50	0.67	0.59			
-cccma_cgcm3_1-	1.13	1.19	1.70	1.11	1.12	1.17			
-cnrm_cm3-	0.79	0.76	0.65	0.51	0.68	0.60			
-csiro_mk3_0-	1.04	1.06	1.21	1.04	1.05	1.06			
-gfdl_cm2_0-	0.93	0.91	0.77	0.92	0.91	0.90			
-giss_model_e_r-	1.08	1.12	1.47	1.07	1.09	1.12			
-inmcm3_0-	1.12	1.18	1.64	1.11	1.12	1.17			
-ipsl_cm4-	1.04	1.06	1.20	1.06	1.02	1.07			
-miroc3_2_medres-	0.80	0.77	0.66	0.54	0.69	0.64			
-miub_echo_g-	0.82	0.80	0.67	0.62	0.75	0.70			
-mpi_echam5-	1.00	1.00	1.00	1.00	0.99	1.00			
-mri_cgcm2_3_2a-	0.86	0.82	0.68	0.71	0.81	0.77			
-ncar_ccsm3_0-	0.81	0.79	0.67	0.59	0.73	0.67			
-ncar_pcm1-	1.12	1.17	1.67	1.09	1.12	1.16			
-ukmo_hadcm3-	1.01	1.02	1.05	1.03	1.00	1.01			
AVG	0.955	0.960	1.046	0.860	0.915	0.911			


Comparison of Results for Scenario a2 – 2040 with Baseline

Web-Based Climate Change DSS

period

Status of Basin Implementation

www.ClimateChangeDSS.com

- Acknowledgements:
 - Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP's Working Group on Coupled Modeling (WGCM)
 - Bureau of Reclamation: Jim Prairie, Carly Jerla
 - Colorado Basin River Forecast Center (CBRFC)
- References:
 - Bureau of Reclamation, 2007. Colorado River Interim Guidelines for Lower Basin Shortages and Coordinated Operations for Lakes Powell and Mead, Final Environmental Impact Statement, 2007. Available at <u>http://www.usbr.gov/lc/region/programs/strategies/FEIS/index.html</u>. Accessed 7/22/2011.
 - Christensen, N. S, and D. P Lettenmaier. 2007. A multi-model ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin. *Hydrology and Earth System Sciences* 11: 1417-1434.
 - Prairie, J. and Callejo, R. 2005. Natural Flow and Salt Computation Methods, Calendar Years 1971-1995. Bureau of Reclamation, Upper Colorado Regional Office and Lower Colorado Regional Office.
 - Riverside Technology, inc. 2011. Web-Based Climate Change Decision Support System (Final Report). Research performed under the NOAA Small Business Innovative Research program.
 - Zagona, E.A., Fulp, T.J., Shane, R., Magee, T., and Goranflo, H.M. 2001. RiverWare: Generalized Tool For Complex Reservoir System Modeling. Journal of the American Water Resources Association 37(4): 913-929.