

Improved Optimization Modeling

Presenter: Tim Magee

2013 RiverWare User Group Meeting August 27, 2013

Modeling Challenges

- Probable Maximum Flood (PMF)
 One model, but many uses
- 2. Alternative Optimal Solutions
- 3. Optimization Modeling Practices

TVA PMF Modeling

- Goal: One model for PMF & Daily Opt/Sim
- Why?
 - Want the model ready to use if the moment arrives
 - Data updates, DMI updates, RiverWare updates, etc.

PMF Briefly

- Large, unusual events that cause damage
 - Esp. Nuclear power plants
- Large rain / Runoff
- Seismic events
- More Info Available

RiverWare Changes for PMF

- Simulation
 - Multiple Unregulated Spillways
 - Failure during the run triggered by elevation
- Optimization
 - Compatibility
 - Not modeling failure during the run
- Canal Convergence
 - Some algorithmic changes
 - More coming: trust regions

Model Changes

- New data for PMF
- Table extensions
- Method changes
- Based off of a previous simulation model

Model Merging: Opt Model and PMF Model

- Harder than it sounds
 - Functional for both uses
- Need for supporting tools
 - Modelcomp is of use
 - Designed for another purpose: small output changes
 - Comparing method selection selections
 - Comparing slot configurations
 - Export data tables and Unix Diff/Merge

Additional New Tools?

- Focus on the "Inputs" that differ
 - Policy statements, activation, prioritization
 - Methods
 - Tabular data range, values, and shape
 - Columns per slot
 - Series inputs
 - Dates
- Diff and Merge assistance
- Graphical assistance

Alternative Optimal Solutions

- Important issue
 - Within RiverWare and other optimization
- Analogous to underdetermined Sim/RBS
 - Difference you get a solution.
- Useful in some ways
 - What makes prioritized policy work in Opt and RBS
 - Low priority policy is limited by higher priorities
 - Gradually remove degrees of freedom

Alternate Optima Pose a Challenge

- Within optimal solutions, arbitrary choice
- Small data changes can result in large solution changes
- Simple Example (but the essence of the issue)
 - Subset of 3 1-unit reservoirs & 3 time periods
 - System generation in each period: 1 unit
 - Total generation for each reservoir: 1 unit
 - 3! = 6 alternative optima
- Imagine more time periods and reservoirs!

Reducing Alternative Optima

- 1. Add more "real" low priority policy
 Why aren't the solutions equally good in practice?
- 2. Smooth out the solution Simple and automated
- 3. All other things being equal, get as close to the previous solution as possible

Key question: close in what sense?

System generation, total reservoir release, elevations?

Smoothing the Solution

- First Differential: |∆QT_t| ≤ Ramping Limit
 - Still allows frequent ramps up and back down
- Second Differential:
 - $|\Delta QT_t \Delta QT_{t-1}| = QT_t 2QT_{t-1} + QT_{t-2}$
 - Constraints on sum of second differential during run
- Allows normal peaking in response to prices but prevents arbitrary ramping up and down

Optimization Modeling Practices

- Enhancing post-opt RBS modification of the solution – Incorporating post-processing in RW
- Global Function Sets
 - Reuse the same function in Opt and RBS
 - Soon to be savable with the model file
 - Reuse in other models
- Data objects with pre-RBS opt solution
- Rules that report significant RBS changes
- Reducing activation/deactivation of constraints