Optimization Enhancements in Modeling Hydropower: Regulation and Integer Programming

> Tim Magee CADSWES

Overview

Power Regulation

- Simultaneous optimization with generation
- System Value of Hydropower Regulation
 - Similar to existing modeling of generation
- Modeling Regulation for an Individual Reservoir
- Details of Modeling Regulation
- Integer Programming for Hydropower

RiverWare Optimization

- Optimization followed by Simulation.
- Preemptive Linear Goal Program
 - Piecewise-linear approximation of nonlinear functions
 - Physical equations: mass balance, routing, sloped storage, hydropower, etc.
 - Prioritized water policy constraints
 - Hydropower Objective maximize system value of generation
 - Plant level modeling of hydropower

Hydropower Objective:

- Maximize Power Value
- Block costs, an example
 - <u>System</u> value of the first 50 MW of hydropower,
 - <u>System</u> value of the second 50 MW, etc. (Decreasing values)
 - 100 blocks for each 6-hour time period

Ancillary Services

- Regulation and Frequency Support
- Spinning Reserve
- Non-spinning Reserve

Typical Objective Function

Maximize:

regulation value – regulation operating costs + generation value + cumulative value of stored water ■ Value is system wide System value of regulation ■ Block costs for each time period. Based on market and/or thermal system May require iteration with thermal system.

Modeling Regulation at a Reservoir

Generation_t + Regulation_t ≤ Maximum Power_t
Generation_t - Regulation_t ≥ Minimum Power_t
Regulation Cost = coef_r * Regulation_t

Summary

Simultaneous optimization with generation Additional services possible System Value of Hydropower Regulation Block values for each time period ■ Still a loop with ESO Model at each reservoir: ■ Interaction with Generation Regulation Costs

Integer Programming for Hydropower Optimization

- Task for this FY
- Discrete operating points esp. zero and minimum power.
- Avoidance of "holes" and "spikes"
- Model with 0-1 variables
- Also needed for regulation

Current Hydropower Optimization

- Piecewise approximation of nonlinear function, continuous
- Manual adjustment
 - Well intentioned
 - Potentially violate water constraints
 - Potentially far from optimal

Rounding Heuristic

- Exact optimization is likely difficult:
 - Many combinations of 0-1 variables
 - Many near optimal solutions
- Exact optimization isn't worth it given fluctuations in data.
- Instead, sequentially round up or round down variables.
- Remaining variables are reoptimized.
- Preserves feasibility, likely to be near optimal