Tarrant Regional Water District Water Supply Reliability Study

John Carron, Hydrosphere Resource Consultants, Inc.

Laura Blaylock, David Marshall, Tarrant Regional Water District

Steve Setzer, Kevin Wheeler, Subhrendu Gangopadhyay, Hydrosphere Resource Consultants, Inc.

RiverWare Users Group Meeting February 6, 2007

Outline

- Motivation and Objectives
- Modeling Approach
- Synthetic Hydrology and Statistics
- RiverWare Simulations
- Preliminary Results
- PDSI Template

Motivation and Objectives

- How reliable is TRWD's water supply?
- Limitations / Constraints:
 - Infrastructure (pipeline capacity, reservoir elevations)
 - Hydrologic (e.g., drought)
 - Water Rights
- How do these limitations and constraints manifest themselves as demands increase?
 - Forecast demands (2010, 2020, ..., 2060)
 - How effective is the current drought response plan?
 - What are appropriate conservation / drought response measures?

Modeling Approach

- TRWD RiverWare Model (1941-2003)
- Monte-Carlo type simulation using synthetic hydrologies
- Scenarios:
 - Simulate system at various demand levels
 - Simulate system with 2 different pipeline configurations
 - Simulate system with and without drought management plan in place

How to Evaluate Reliability without a Crystal Ball?

- Use Historical Data Set?
 - Good: Known events / statistically "tractable"
 - Good: Maintain multi-year correlations
 - Bad: Recorded History <> Future

Non-Parametric Reconstructions

- Based on Historical Data
- Maintains multi-year correlations (e.g., patterns of drought events)
- Uses actual historical hydrologic data
- Sampling from "similar years" creates multiple synthetic traces

TRWD System Index Flow (Annual Sum of Reservoir Inflows)

Annual Index Flow for the TRWD System

Index Flow Template

Above Normal Normal Below Normal 3 -2 -Category 1 -0 1941 1951 1961 1971 1981 1991 2001 Year

Template Trace for the TRWD System

Categorical Resampling

Template Trace	R	Resampling Trace		Synthetic Trace
low mid upper		Bins		low 1967 1,303,284
mid Iow	low	mid	upper	mid 1951 1,544,307 upper 1957 2,878,758
low low upper mid low 	1967 1961 2001 1963 1954 	1951 1999 1991 1975 1994	1957 1985 1997 1979 1986	mid19991,906,515low19611,314,338low19611,314,338low20011,344,832upper19852,552,954mid19911,466,826

Trace Generation Process

Synthetic Hydrologies

Synthetic Traces for the TRWD System

Synthetic Trace Statistics

RiverWare Simulation

Multiple Run Manager (MRM)

- 100 synthetic hydrology traces
- 9 demand levels (2000, 2010, 2015, 2020, 2025, 2030, 2040, 2050, 2060)
- Pipeline configuration (current and unlimited)
- Drought Management Plan (Triggers / Stages)
- 100 x 9 x 2 x 2 = 3600 63-year simulations (36 MRM runs)
- Graphical Policy Analysis Tool (GPAT)

Pipeline demand shortages (percentage of years in which a shortage occurs)

Demand Level	Current Pipeline Capacity	Infinite Pipeline Capacity
2000	0%	0%
2010	0%	0%
2015	0.67%	0%
2020	2.3%	0.08%
2025	8.4%	0.79%
2030	16.6%	2.3%
2040	60.9%	10.9%

Cumulative Pipeline Shortages Current Pipeline Capacity

Cumulative Pipeline Shortages Infinite Pipeline Capacity

Detail: TRWD System Storage

Conclusions (Preliminary)

- Pipeline capacity is a limitation to meeting future demand
- Drought Management Plan as it is currently defined is not particularly effective in reducing the frequency of shortages
- Synthetic hydrology / Monte-Carlo approach is an effective method for addressing question of water supply reliability

What's Next?

PDSI-Based hydrologic traces (NOAA/NCDC)

- 250 years (1750-2003)
- Extended drought periods (1760s 1770s; 1850s 1860s)
- Same demand, pipeline configuration scenarios
- Drought Management Plan refinement
 - Supply thresholds for triggering action
 - Demand reduction targets

What's Next?

PDSI Based Classification

Questions?

Synthetic Trace Statistics

Synthetic Trace Statistics

Probability of a Pipeline Shortage During the Year Current Pipeline Capacity

