

Daily River Operations Model (DROM)

River Operations Center (ROC) – Lower Colorado River Authority (LCRA)

Steve Setzer, Kevin Wheeler, and John Carron February 10, 2010

Outline

- Colorado River Background
- Overview of 3 DROM models
- How the models work together
- Benefits of using one platform (RiverWare)

Background

- Previously, RiverWare planning model developed for LCRA Planning Group (LCRA – Brad Vickers – AMEC)
- River Operations Center (ROC) required a daily operations model
 - Determine Daily Releases, hourly routing, monthly/annual accounting
- AMEC retained by Lower Colorado River Authority (LCRA) River Operations Center (ROC)
- Develop 3 RiverWare Models (DROM)
 1. Daily Release Model (daily timestep)
 2. Routing Model (1 hour timestep)
 - 3. Accounting Model (daily timestep)

Colorado River – State of Texas

Lower Colorado River – Basin Map

Background

- Lower Colorado River Administered as Prior Appropriation Water Rights System – Use RiverWare's Water Rights Solver
- Run-of-River (natural flows) and Stored Water (Firm and Interruptible Contracts as backup)
- Municipal, Industrial, Irrigation, Agriculture
- Instream Flow Targets
- Environmental Flows to Bay (monthly volume)

Daily Release Model

- Determine daily release volume from Lake Travis (Mansfield Dam) and Lake Austin (Tom Miller Dam)
 - Minimum required release to meet downstream demands, instream flow targets, and environmental flows to bay – Water Rights Solver
 Rto Available Storable Informat Tr Remaining Storable Information
 - Suggested operation of Buchanan and intermediary lakes
- Inputs
 - Forecasted inflows to Highland Lakes and tributaries to lower river
 - Municipal and Irrigation Demands as orders

Output

 Projected daily releases at future timesteps (forecasted releases) 2-3 days out

RiverWare Schematic

Routing Model

- Hourly timestep
- Begins at Tom Miller Dam
- Variable Time Lag Routing
 - Travel time study performed by LCRA at various flow rates
- Storage routing for flow attenuation
 - Added during calibration process
- Inputs
 - Hourly Tom Miller Dam Release schedule
 - Diversion orders
 - Lower river inflows
 - Base flow (gains/losses)
- Outputs
 - Flow rate at gage locations (ISF targets)
 - Flow rate a diversion locations (shortage)

Routing Model Results

- Given hourly release schedule:
 - "Gaps" at the instream flow locations
 - "Gaps" at the diversion locations
- Given actual gage flows:
 - Calculate ungaged surface inflows
 - Calculate base flows
- Two Main Purposes:
 - 1.Primary ensure that hourly release schedule does not result in "holes" downstream
 - 2.Secondary (unintended) use for base flow studies to adjust base flows seasonally

Accounting Model

- Performs "after the fact" accounting to allocate run-of-river and stored water Water Rights Solver
- Very Similar to Daily Release model
 - Daily timestep
 - Releases input, computes resulting breakdown of RoR/Stored Water use
- Run monthly to determine water use and purpose of releases
- Run annually to determine annual water use and accounting
- Two "Modes"
 - 1. Reporting customer use of run-of-river vs. stored water
 - 2. Reporting on reservoir releases
 - Run-of-river bypass
 - Stored water release
 - Purpose of releases (irrigation, municipal, environmental and instream flows)

Daily Accounting Model

- Mode 1 Customer Use
 - Inputs: actual inflows to highland lakes and lower river, actual reservoir releases and levels, actual diversions
 - Outputs: breakdown of run-of-river vs. stored water diversions for each customer/diversion point
- Mode 2 Intent of Release
 - Inputs: actual inflows to highland lakes, actual reservoir releases and levels, forecasted lower river inflows, orders at diversion locations
 - Output: breakdown of reservoir releases by intent of release stored water vs. run of river
 - For each, breakdown into municipal, irrigation, environmental, etc...

Model Interaction – Daily Release and Routing Model

- **1.** Run daily release model to determine minimum daily release volumes
- 2. Send results to hydropower generation desk
- **3.** Shape daily volume to hourly release schedule
- 4. Run routing model to verify hourly release schedule
- **5.** Repeat steps 2-4 if necessary (without violating min flow in step 1)

DROM Schematic

15

Summary

- RiverWare used for all three DROM models
- All models use same schematic (routing model begins at Tom Miller)
- For Daily Release and Accounting Model...
- Same accounting system
- Same "core policy logic" same core RiverWare rules for daily release and monthly/annual accounting – Water Rights Solver
- Consistent platform and logic for all three models. Benefits...
 - Consistent comparisons
 - Evaluate system and operating efficiency by comparing daily release and accounting models
 - Consistent platforms and logic allow for "apples to apples" comparison
 - Performance studies

Questions?

