Truckee Planning Model

RiverWare User Group Meeting February 1, 2012 Boulder, CO Heather Gacek - PWRE

www.precisionwre.com

Truckee RiverWare Planning Model

Collaborative Development

Federal Watermaster

- Truckee Meadows Water Authority (TMWA)
- Pyramid Lake Paiute Tribe (PLPT)
- State of California
- State of Nevada

Technical Workgroup

Model Details

Model Run Time, 100-Year Run

Approx. 60 Min. (64-bit Machine, 8GB Ram)

Complete Basin Operations

Reservoir Operations, Demands and Flows, and Stakeholder Operations

Full Basin Accounting

Daily Timestep

Run Times from 1 to 100 Years

Global Function Set

Shared with Truckee Operations Model (15-Month Daily Operations)

Truckee Global Function Set

Continuity!

GFS preserves continuity between complimentary basin models and prevents diverging development.

Truckee RiverWare Planning Model

Р

February 1, 2012

Input Data

Initialization Spreadsheet

- Reservoir Account Storages
- Reservoir Physical Storages

Hydrology Input Spreadsheet

- Reservoir Precipitation
- Reservoir Inflows
- Reach Local Inflows

Input Data – Reservoir Initialization

- Allows User to *quickly* alter Initial Basin Conditions
- User Inputs or Imports Starting Account Storages for all Reservoirs
 - User can enter either Current, Historic, or Synthetic Data
- Spreadsheet Calculates Physical Reservoir Storages
- Physical and Accounting Storage Data Brought into the Model through Direct Connect Excel DMI

A	0	C	, D	E.	1	6	н	1	3. C	K.	1
			Bring Stag	ng Data A	Nove Edited Data To						
		DIRECTIONS									
				Bo	ca Reservoir I	nitialization	(acre-ft)				
	Pool Elevation	Total Storage	ASW .:	SW	Carryover ASW	Carryover SW	Pondage	Fish	Fish Credit	TMWA	Temp TCanal
	5588.02	26700.0	0	25900	0	0	800	0	0	0	0
Nemalo						-					
										-	
				Stam	pede Reservo	ir Initializat	ion (acre-	ft)			
	Pool Elevation	Total Storage	Fish	Fish Credit	TMWA	ASW	SW	Carryover All	Carryover SW	Temp TCanal	
	5896.47	87700	80010	2151	5539	0	0	0	0	0	
				Indeper	ndence Reserv	oir Initializ	ation (acr	e-ft)			

Input Data – Hydrology Input

- 100-Year Historic Dataset
- Dataset Builder
 - Historic hydrology,
 - Exceedence-based hydrology, or
 - Any combination of these, in any order.
- Data Brought into Model through Direct Connect Excel DMI

Model Output Examples

Example Output – Lake Tahoe

Lake Tahoe Pool Elevation

*Plot is for Demonstrative Purposes Only

Truckee RiverWare Planning Model

Example

Output

Lahontan Reservoir and Pyramid Lake

- Seven 100-year Runs
- Historic Hydrology, In Sequence (1901-2000)
- Varying Truckee Canal Capacities
 - 0 cfs
 - 150 cfs
 - 250 cfs
 - 350 cfs
 - 450 cfs
 - 600 cfs
 - 900 cfs

Example Output – Lahontan Res.

*Plots are for Demonstrative Purposes Only

2000

instead of

Links

Truckee RiverWare Planning Model

Example – Pyramid Lake

*Plot is for Demonstrative Purposes Only

Example Model Uses

Model Use #1 – Evaluate/Optimize Stakeholder Operations

The Planning model rule logic provides for flexibility in stakeholder operations.

- The user can adjust: demands, diversion capacities, release priorities, etc.
 - Adjustable values are stored on Data Objects and not hard-coded into the rules.
- Allows for evaluation of alternative operational policies.
 - For example, a stakeholder could perform an outside cost analysis and then evaluate the top alternatives for reliability and feasibility using the model.
- Allows stakeholders to plan for future conditions.
 - Evaluate potential effects of climate change, an increase in demand, changes in irrigation practices or crops, etc.

Model Use #1 – Evaluate/Optimize Stakeholder Operations

- Example: Truckee M&I Operations
 - Rule logic performs current M&I operations and provides flexibility to analyze alternatives.
 - Customizable Information Includes:
 - Annual M&I Demand
 - Daily Distribution of Annual Demand
 - Annual Groundwater Availability
 - Annual Groundwater Recharge Goal
 - Daily Groundwater Extraction and Recharge Capacities
 - Treatment Plant Capacities
 - Surface Water Diversion Capacities
 - Priority Order of Additional M&I Drought Water Sources
 - Floriston Rate Water (Always the top priority)
 - Groundwater and Drought Groundwater
 - 6 Surface Water Sources

Model Use #2 – Truckee Canal Diversions

Operating Criteria and Procedures for the Newlands Reclamation Project (OCAP)

 Truckee Canal diverts water from the Truckee River and delivers it to Lahontan Reservoir on the Carson River.

Model Use #2 - OCAP

- The OCAP specifies monthly storage targets on Lahontan Reservoir;
- The Bureau of Reclamation is responsible for setting the flow targets in the Truckee Canal needed to meet these monthly storage targets on Lahontan Reservoir.

*Plot is for Demonstrative Purposes Only

Truckee RiverWare Planning Model

Model Use #2 - OCAP

- The purpose of the OCAP is to maximize the use of the Carson River and minimize the use of the Truckee River to meet Newlands Project water rights.
- The Bureau of Reclamation will most likely be assessing the OCAP.
- The Planning model will be used for the analysis involved in any revisions to the OCAP.
- Modeled Elements of OCAP include:
 - Lahontan Storage Targets
 - Incentive Credit Water earned by water right holders for exceeding efficiency targets, allowing for additional storage in Lahontan Reservoir.
 - Reduced allocations in years of drought.

Model Use #3 – Newlands Project Planning Study

- The study is being conducted for the Mid-Pacific Regional Office of the Bureau of Reclamation by MWH and PWRE.
- The study formulates and evaluates a wide variety of alternatives to reliably serve Newlands Project water rights.
- Alternatives include various Truckee Canal capacity limitations. The main objectives are safety, water rights reliability, and viability of the Newlands Project.

Questions?

February 1, 2012

Truckee RiverWare Planning Model