RIVERWARE MODEL OF THE EASTERN NILE REGION

RiverWare User Group Conference Boulder, Colorado August 26-27, 2013

WATER BALANCE CONSULTING

Kevin Wheeler, P.E.

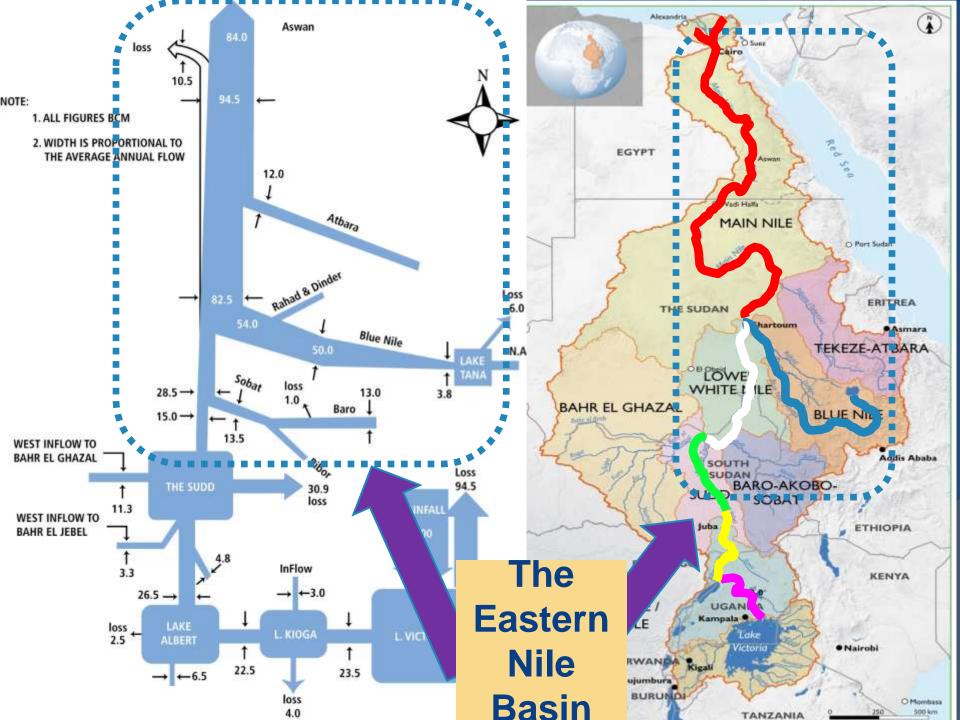
Acknowledgements

Big Thanks to:

- John Carron
- Steve Setzer
- Taylor Adams
- Edie Zagona
- Gwen Miller
- David Neumann
- Mitch Clement

(Pretty much everyone at CADSWES)

Agenda Topics



Nile Basin Countries

The Nile Basin

A Valid Comparison?

Colorado River Basin	Nile River Basin
40 Million People	238 Million
7 States + 2 Countries	11 Countries
18.5 BCM/year	82.5 BCM/year
462 m ³ /person	347 m ³ /person
#1 Use = Agriculture	#1 Use = Agriculture

Trans-boundar	Management	Agreements
	y management.	Agreements

- 1922 Colorado Compact
- 1944 USA/Mexico Treaty
- No Basin-wide Agreement

1948 - Upper Basin Compact

Water Allocation? - 1902

1902 – "Treaty between Ethiopia and the United Kingdom, Relative to the Frontiers between the Anglo-Egyptian Sudan, Ethiopia, and Eritrea"

Emperor Menelik II of Ethiopia "engages himself towards the Government of His Britannic Majesty not to construct, or allow to be constructed, any work across the Blue Nile, Lake Tsana, or the Sobat which would arrest the flow of their waters into the Nile, except in agreement with His Britannic Majesty's Government and the Government of the Sudan"

Ethiopia:

- ✓ Amharic and English
 Versions are Different
- Never Ratified by any Government Organ
 Sudan

Imagery Date: 4/10/2013

13º01'07.34

Uganda DRC Rwanda Burundi Burundi Tanzania Soogle Tanzania Soogle

Water Allocation? - 1929

"1929 Nile Waters Agreement" Between British East African Colonies Egypt vs. Kenya, Uganda, Tanganyika, Sudan

"Except with the prior consent of the Egyptian Government, no irrigation works shall be undertaken nor electric generators installed along the Nile and its branches nor on the lakes from which they flow if these lakes are situated in Sudan or in countries under British administration which could jeopardize the interests of Egypt either by reducing the quantity of water flowing into Egypt or appreciably changing the date of its flow or causing its level to drop."

Water Allocation? - 1959

"1959 Nile Waters Agreement between the United Arab Republic and the Republic of the Sudan for the Full Utilization of the Nile Waters"

Established the Total Annual Flow at Aswan = 84 BCM

- 55.5 BCM to Egypt
- 18.5 BCM to Sudan
- 10.0 BCM for Evaporation at Lake Nassar

Ethiopia, Uganda, Kenya, Tanzania, Rwanda, Burundi, DRC:

- ✓ Completely Rejected
- ✓ "Reasonable and Equitable Use" – 1966 Helsinki Rules

Uganda DRC Rwanda Burundi Tanzania⁵ cogle Tanzania⁵ cogle

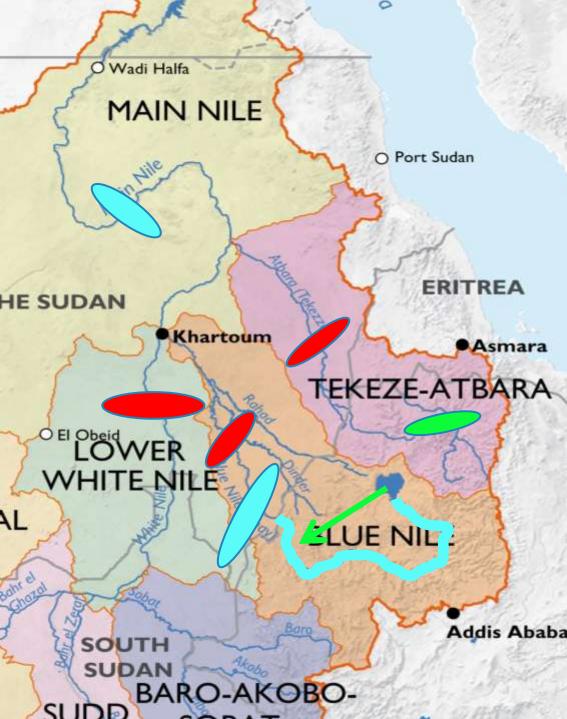
Infrastructure

1902 - Low Aswan Dam (Egypt)1925 - Sennar Dam (Sudan)1937 - Jebel Aulia Dam (Sudan)

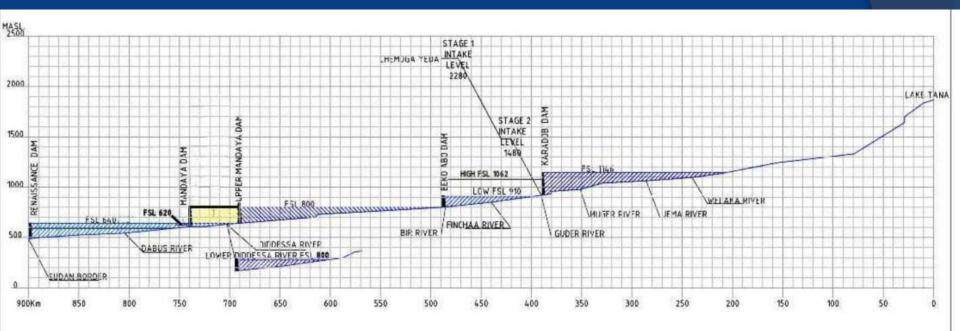
<u>1959 Egypt-Sudan Treaty</u> 1964 - High Aswan Dam (Egypt) 1965 - Khashm El Girba (Sudan) 1967 - Rosaries Dam (Sudan)

1964 – USBR Study "Land and Water Resources of the Blue Nile Basin"

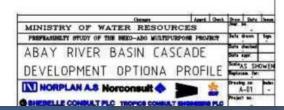
Infrastructure


Ethiopia

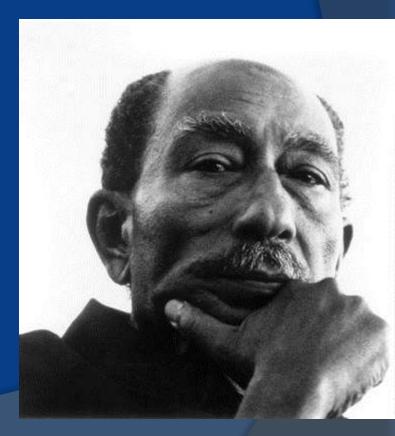
2009 - Tekeze Dam 2010 - Tana-Beles Hydropower Diversion


1964 – USBR Study "Land and Water Resources of the Blue Nile Basin"

Sudan


2009 – Merowe Dam 2012 –10 m Heightening of Rosaries Dam

Ethiopian Blue Nile Cascade Plans

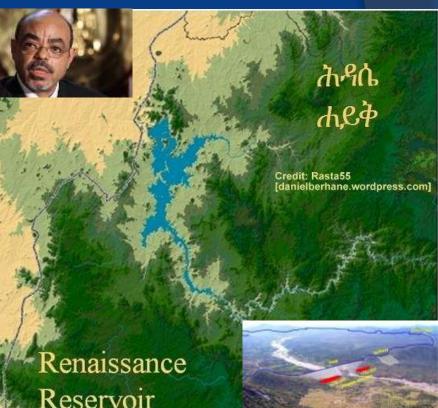

27-10-2010

Historical Egyptian Position

"The only matter that could take Egypt to war again is water."

"We depend upon the Nile 100 percent in our life, so if anyone, at any moment, thinks of depriving us of our life we shall never hesitate to go to war." Egyptian President Anwar Sadat, 1979

1999 Nile Basin Initiative


- Shared vision of 'sustainable socioeconomic development through the equitable utilization of, and benefit from, the common Nile Basin water resources'
- Cooperative Framework Agreement (CFA)
 - Signed by Ethiopia, Rwanda, Tanzania, Uganda, Kenya, Burundi
 - Egypt wants an addition to "Not to adversely affect the water security and current uses and rights of any other Nile Basin"

March 2011

PM Meles Zenawi Announced The Grand Ethiopian Renaissance Dam (GERD)

Reservoir

Grand Ethiopian Renaissance Dam

6,000 MW Capacity
74 BCM Storage Volume

150% of Average Annual Flow at Dam Site

15,000 GWH of Additional Energy
4 to 5 times current Ethiopian Production
Sold to Sudan, Kenya, South Sudan, Egypt?

No Plans for Diversion

Grand Ethiopian Renaissance Dam

• Bameza

February 2010

Imagery Date: 2/14/2010

Map Data @ 2013 AND

Image © 2013 DigitalGlobe Image © 2013 GeoEye

11°13'07.68" N 35°05'33.88" E elev 533 m

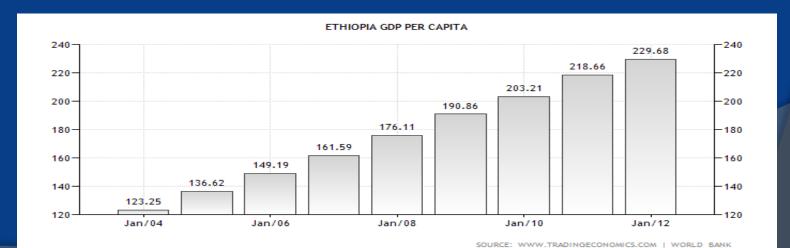
Grand Ethiopian Renaissance Dam

• Bameza

May 2012

Imagery Date: 5/28/2012

Map Data @ 2013 AND


Image © 2018 Digital Globe Image © 2018 GeolEye

11°13'07.66" N 35°05'33.86" E clev 588 m

Funding the Dam - \$4.8B – 15%GDP

- Telecom State Controlled Telecommunications
- All citizens contributing 1 month salary
 - Each year for 5 years!
- Public Bonds

"PURCHASE THE BOND AND PUT YOUR FINGER PRINT IN THE CONSTRUCTION OF THE GRAND ETHIOPIAN RENAISSANCE DAM ON THE ABAY RIVER!"

Construction of the GERD

- Unilateral Decision
- Outside of NBI
- Design Not Public
- EIA Not Public
- No Operating Agreements

CREDIT: EEPCo

CREDIT: William George

CREDIT: Tiksa Negeri

Potential for Water Wars?

• Water conflict analysis (Wolf)

Hydro-hegemony theory (Zeitoun)

 <u>No Military Action</u> according to statements by Egypt

The Politics

4 June 2013 Last updated at 15:37

Egyptian politicians caught in on-air Ethiopia dam gaffe

By Ahmed Maher BBC News

Egyptian politicians are embarrassed after being caught suggesting hostile acts against Ethiopia to stop it from building a dam across the Blue Nile.

They were inadvertently heard on live TV proposing military action at a meeting called by President Mohammed Morsi

Ethiopia last week started diverting the flow of the river in preparation for the \$4.2bn hydroelectric dam.

On completion, the Grand Ethiopian Renaissance Dam would be Africa's largest.

The Blue Nile is one of two major tributaries of the Nile

Related Stories

Egypt Government Rejects a Military Solution

International Panel of Experts

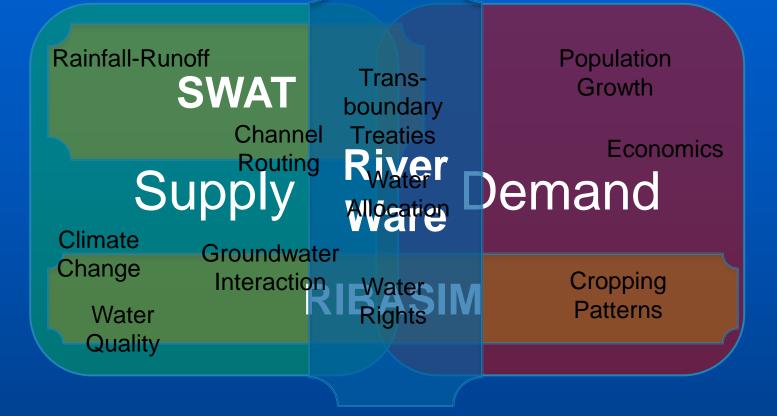
- 2 Egyptian, 2 Sudanese, 2 Ethiopian, 4 International Experts
- **Findings** Complete
 - 'No Significant Impact'
 - 'Needs More Studies'
 - still not released to the public

How will the GERD Impact \odot **Downstream Countries?**

• How will this be measured?

What will happen if there is?

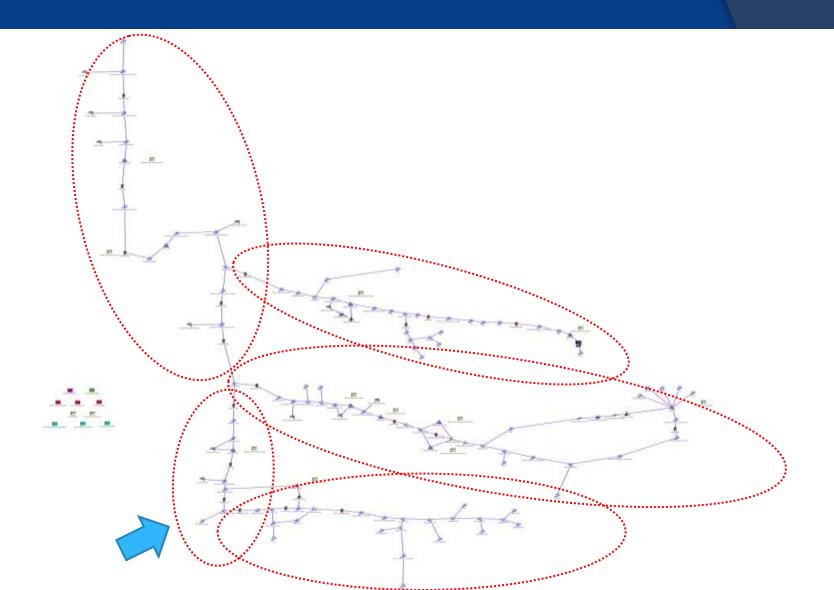
Ethiopia diverts Blue Nile for dam


Agenda Topics

Models in Use

MIKE Basin RibaSim RiverWare WEAP HEC ResSim SWAT RAPSO Nile DST

STRENGTHS OF ENPM MODELS

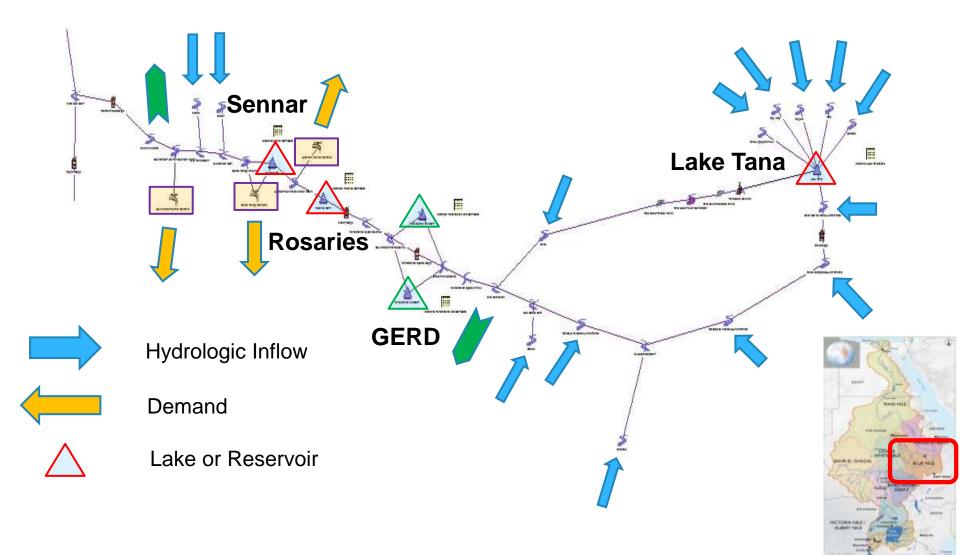

- Complex Supply-Demand Interactions
- Reservoir Operations

- Multiple Management Scenarios
- Policy Interactions

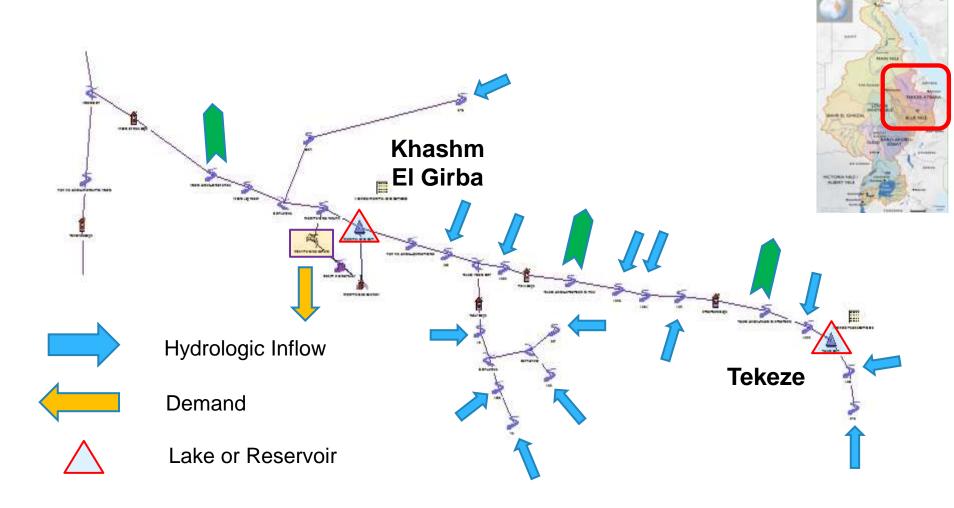
Model Design

- Monthly time step planning model
- 1956-1990 Hydrology (for now)
- Repeating demand patterns (for now)
- Simulate reservoir operations
- Calibrate channel losses, lag times, evaporation rates

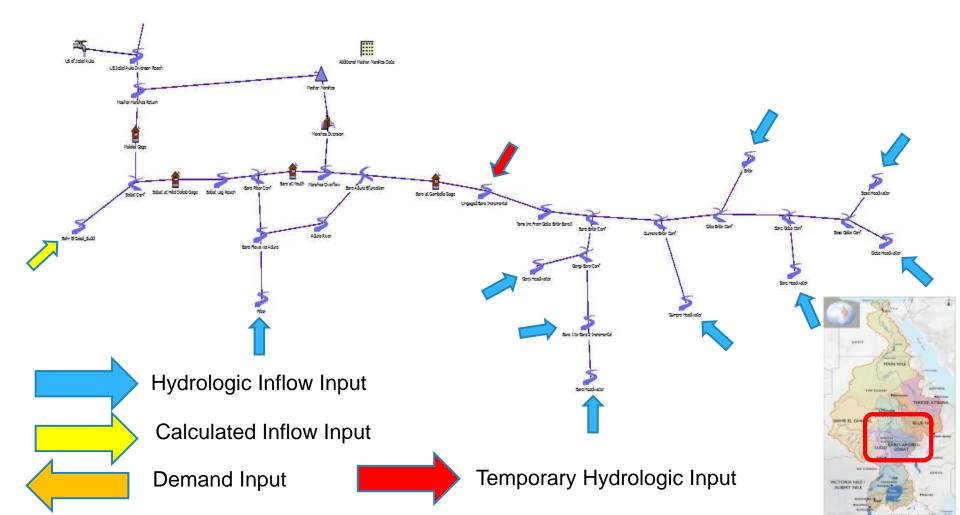
Model Workspace



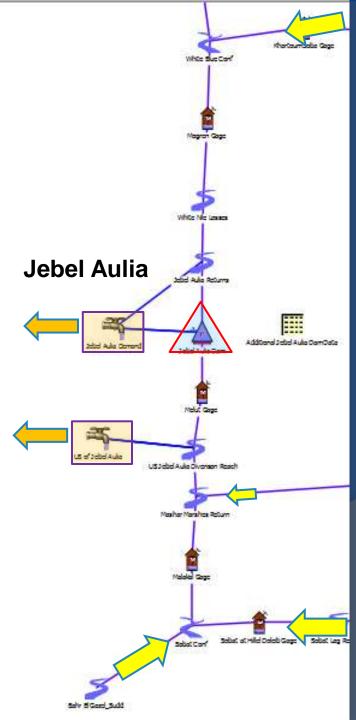
Data Inputs


- Hydrologic Flows
 - Nile Encyclopedia
 - NBI DSS Work Product II
- Consumptive Uses
 - NBI DSS Work Product II
- Reservoir Operations
 - ENTRO Products: Irrigation Tool Kit, Power Tool Kit
 - Unpublished Reports
 - Published Reports
 - Conversations with NBI/ENTRO Staff
 - Conversations with University Staff, Water Ministry Personnel, Dam Operators

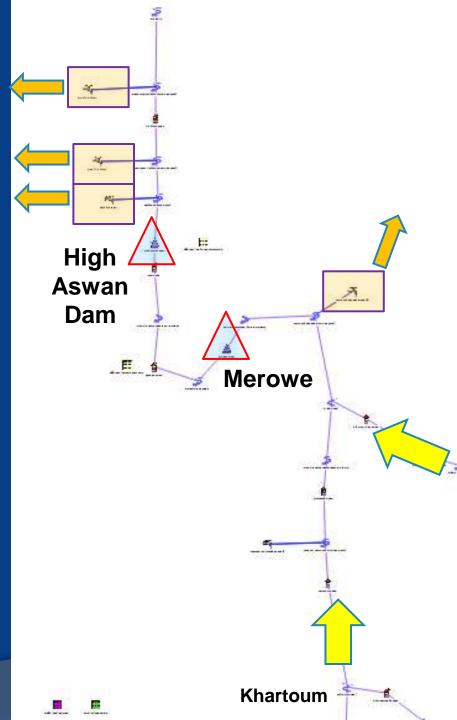
Data Challenges – Poor Data Sharing, Distrust of Data, Public vs. Internal Sources


Blue Nile Input Locations

Tekeze-Setit-Atbara Inflow Locations


Baro-Akobo-Sobat Inflow Locations

White Nile Input Locations

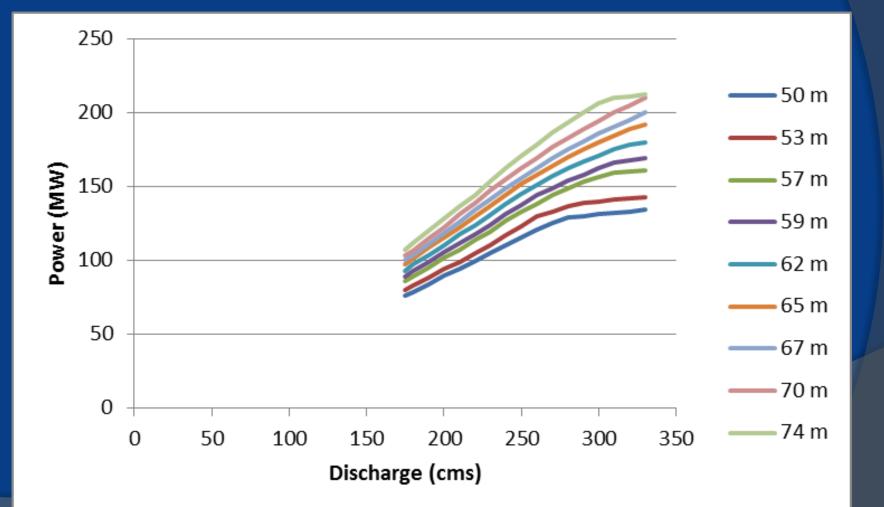


Main Nile Input Locations

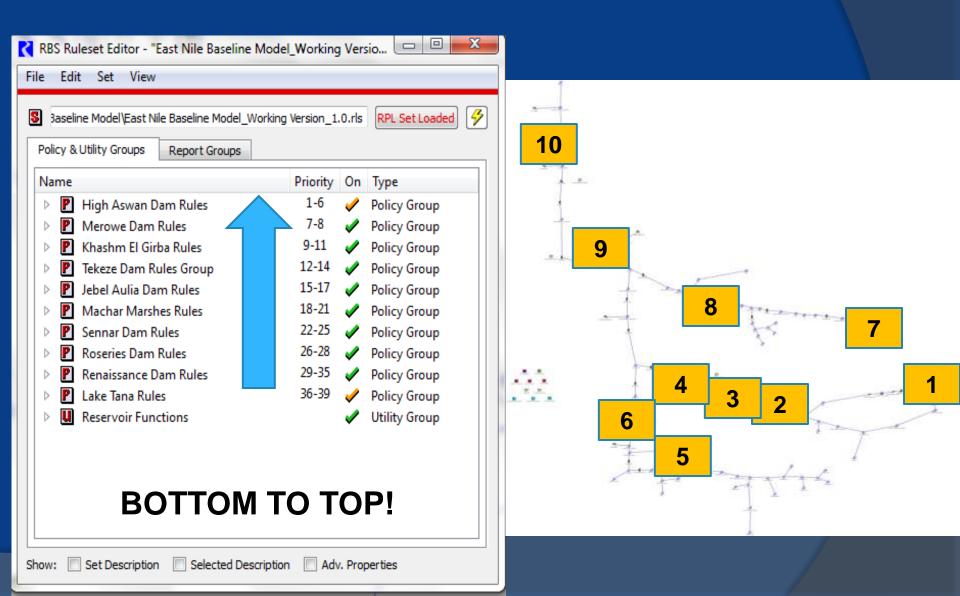
Rosaries Power Plant

Characteristics

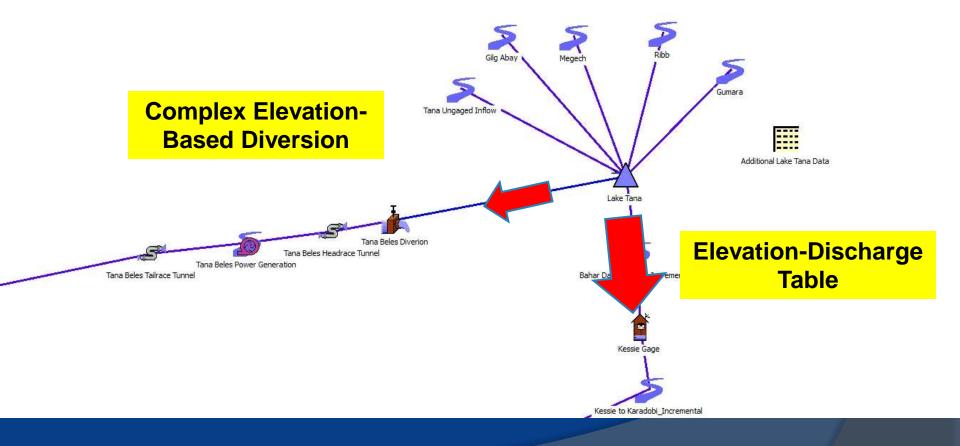
Power Plant Principal Characteristics							
	Roseires						
	Existing	Hei	ghtened + Dinder				
Maximum capacity (MW)	7 x 40	280.00	7x40 + 3x45	415.00			
Maximum discharge (m3/s)	1031.65		1538.00				
Level / Energy coefficient : -	Level	Coefficient	Level	Coefficient			
	(m)	(m3/s/MW)	(m)	(m3/s/MW)			
	467.00	5.92	-	-			
	469.00	5.45	-	-			
	471.00	5.05	471.00	5.22			
	473.00	4.70	473.00	4.83			
	475.00	4.39	475.00	4.50			
	477.00	4.12	477.00	4.18			
	479.00	3.89	479.00	3.89			
	481.00	3.68	481.00	3.65			
			483.00	3.44			
			485.00	3.28			
			487.00	3.12			
			489.00	2.96			
			490.00	2.89			
Sources	NEC		M&M 1997				


Elevation	Max Head	Total Max Capacity		Capacity
		MCM	CMS	Per Gate
				CMS
467.00	25.00	440.35	5096.67	728.10
468.00	26.00	449.07	5197.61	742.52
469.00	27.00	457.63	5296.62	756.66
470.00	28.00	466.03	5393.81	770.54
471.00	29.00	474.27	5489.28	784.18
472.00	30.00	482.38	5583.12	797.59
473.00	31.00	490.36	5675.41	810.77
474.00	32.00	498.20	5766.23	823.75
475.00	33.00	505.93	5855.63	836.52
476.00	34.00	513.53	5943.69	849.10
477.00	35.00	521.03	6030.46	861.49
478.00	36.00	528.42	6116.01	873.72
479.00	37.00	535.71	6200.37	885.77
480.00	38.00	542.90	6283.60	897.66
481.00	39.00	550.00	6365.74	909.39

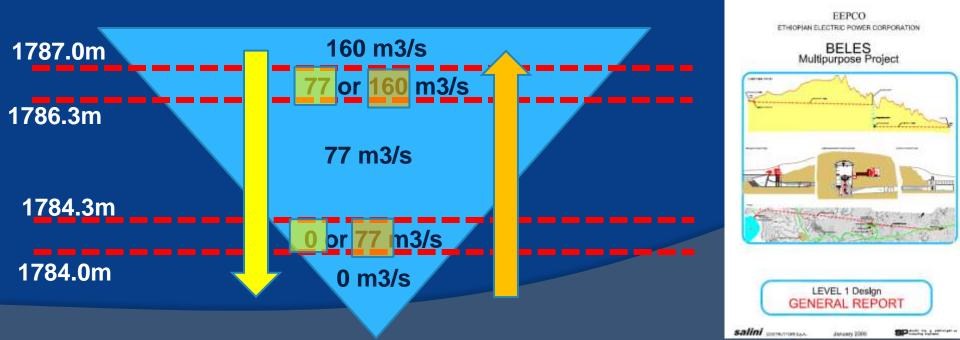
Rosaries: Selecting a Power Calculation Method


21.1.1.3 plantPowerCalc

The plantPowerCalc method calculates the Power and Energy generated based on the whole plant characteristics. If the Power Coefficient is specified, the Power is calculated directly, unless the BEST EFFICIENCY or MAX CAPACITY flag is set on Energy. If its not input, the **Power Coefficient is found from** the interpolation of the Best or Max Turbine Q and Power Coefficient tables using the current Operating Head. If the Turbine Release is less than the Best Turbine Q, the Best Power Coefficient Table is used. If the Turbine Release is greater than the Max Turbine Q, then the Max Power Coefficient Table is used. If the Turbine Release is between the two, an intermediate Power Coefficient Value is found by interpolation.


High Aswan Turbine Characteristics

Rule Execution Order



Lake Tana Operation

Operation of Tana Beles

- $Q_turb = 77 \text{ m}3/\text{s}$, IF 1784.3 \leq LWL \leq 1786.3
- $Q_turb = 0 \text{ m3/s}$, IF LWL $\leq 1784 \text{ OR}$ (LWL < 1784.3 AND d(LWL)/dt < 0)
- Q_turb = 77 m3/s, IF 1784 < LWL < 1784.3 AND d(LWL)/dt > 0
- $Q_turb = 77 \text{ m}3/\text{s}$, IF 1786.3 \leq LWL \leq 1787 AND d(LWL)/dt < 0
- Q_turb = 160 m3/s IF LWL \geq 1787 OR (LWL \geq 1786.3 AND d(LWL)/dt > 0)

Prioritized Reservoir Operations

	Target	Elevation-		Meet Power	Meet Direct	Meet Downstream	Meet Environmental
	Elevations	Discharge	Target Discharge	Objectives	Diversions	Diversions	Requirements
Lake Tana		1					
Roseries Dam	3					1	2
Sennar Dam	4				1	2	3
Tekeze Dam				2			1
Khashm El Girba Dam	3				1		2
Jebel Aulia	2				1		
Merowe Dam				1			
High Aswan Dam			1				
Karadobi Dam				2			1
Beko Abo High Dam				2			1
Beko Abo Low Dam				2			1
Mendaya Upper Dam				2			1
Mendaya Dam				2			1
Renaissance 640 Dam				2			1
Renaissance 620 Dam				2			1
	* Johol Aulia Target	Flowation is dunam	ically bacad on Plua				

* Jebel Aulia Target Elevation is dynamically based on Blue Nile Peak Flows

Rosaries Operations

del Files\Baseline Model\East Nile Baseline Model_Working Version_1.0_KGWSynchronize1_H	Heighten Rosar	ries2.i	Is RPL Set Loaded] 🛯 🗠	P		Z	
y & Utility Groups Report Groups				1				
ne	Priority	On	Туре					
P High Aswan Dam Rules	1-6	1	Policy Group					
P Merowe Dam Rules		1	Policy Group					
Khashm El Girba Rules		1	Policy Group					
P Tekeze Dam Rules Group		1	Policy Group	n Data		000		
P Jebel Aulia Dam Rules		1	Policy Group			-		
Machar Marshes Rules		1	Policy Group		Upstre	am Sennar De	emand	
P Sennar Dam Rules		1	Policy Group		1			
P Roseries Dam Rules		1	Policy Group		/		ſ	
44 🖪 Augment Roseries Dam Outflow to Meet Environmental Requirements		1	Rule					
#3 B Augment Roseries Dam Outflow to Meet Downstream Demands		1	Rule		1	A	dditional Ro	oseries D
#2 🖪 Set September Roseries Dam Outflow To Immediately Fill Reservoir		1	Rule	Semar Div	ersion No.			
#1 B Set Roseries Dam Outflow By Target Elevation		1	Rule			P	K	
P Renaissance Dam Rules		1	Policy Group			Roseries	Dam	
P Lake Tana Rules	37-40	1	Policy Group					
U Reservoir Functions		1	Utility Group					E Diem
			and the second					

Three Phase Approach

Phase 1: Calibration Model

Phase 2: Baseline Model

Phase 3: Scenario Model

Agenda Topics

Item

3

Item

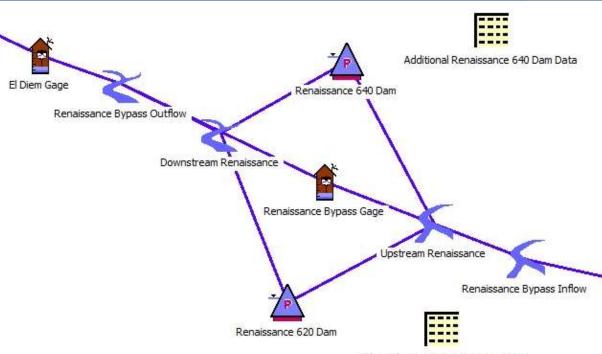
Eastern Nile RiverWare Model

Development Scenario Examples

Future Applications

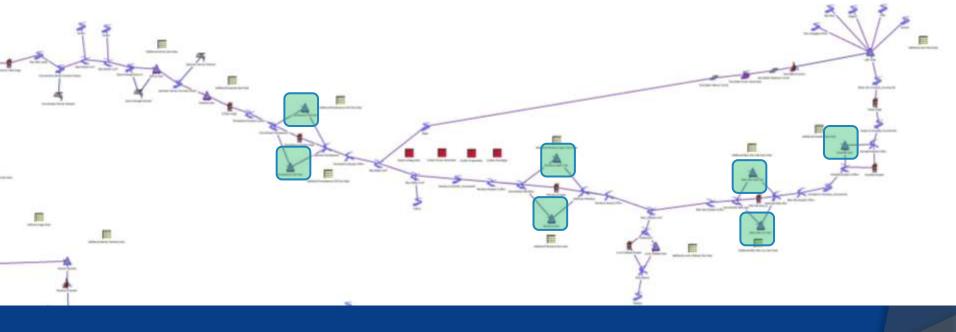
Proposed Infrastructure

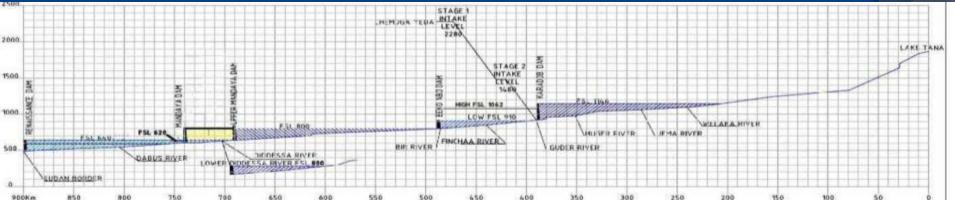
Blue Nile


Karadobi Dam Beko Abo High Dam Beko Abo Low Dam Mendaya Upper Dam Mendaya Dam Renaissance 640 Dam Renaissance 620 Dam Didessa Dam

Baro-Akobo-Sobat

Baro 1 Dam Baro 2 Dam

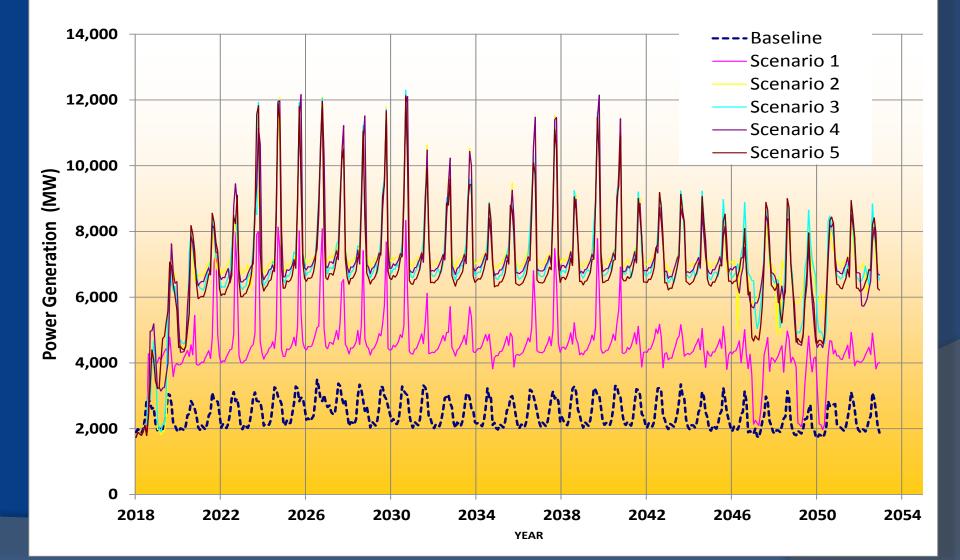

Main Nile


Sherieg Kajbar

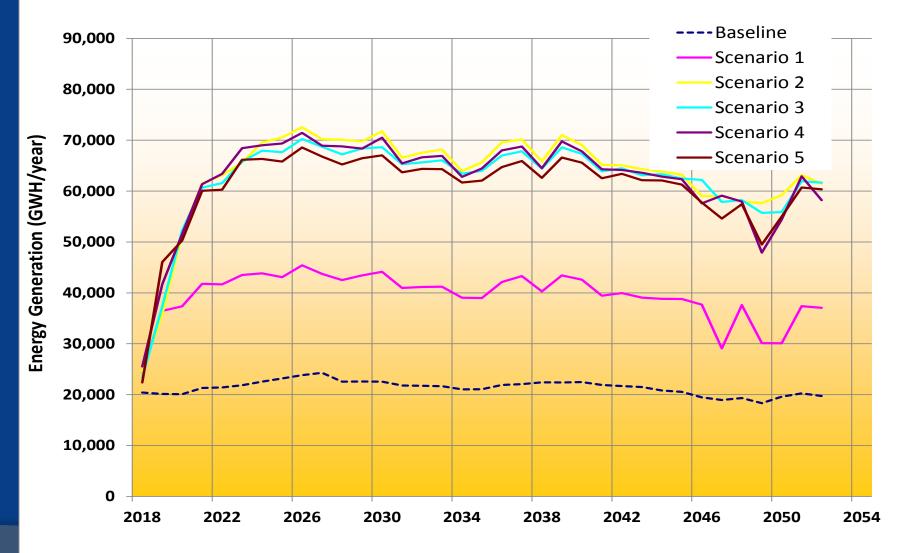
Additional Renaissance 620 Dam Data

Proposed Infrastructure on the Blue Nile

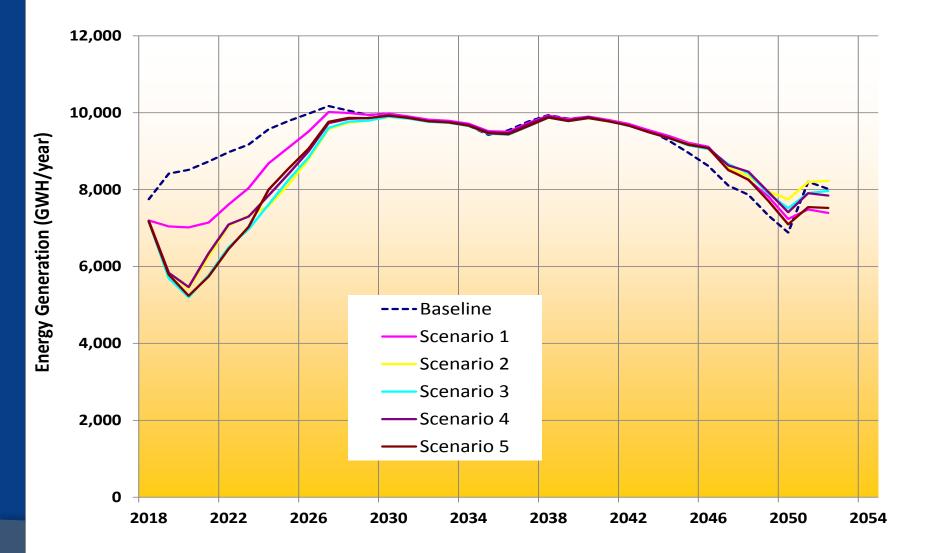
Scenario Analysis

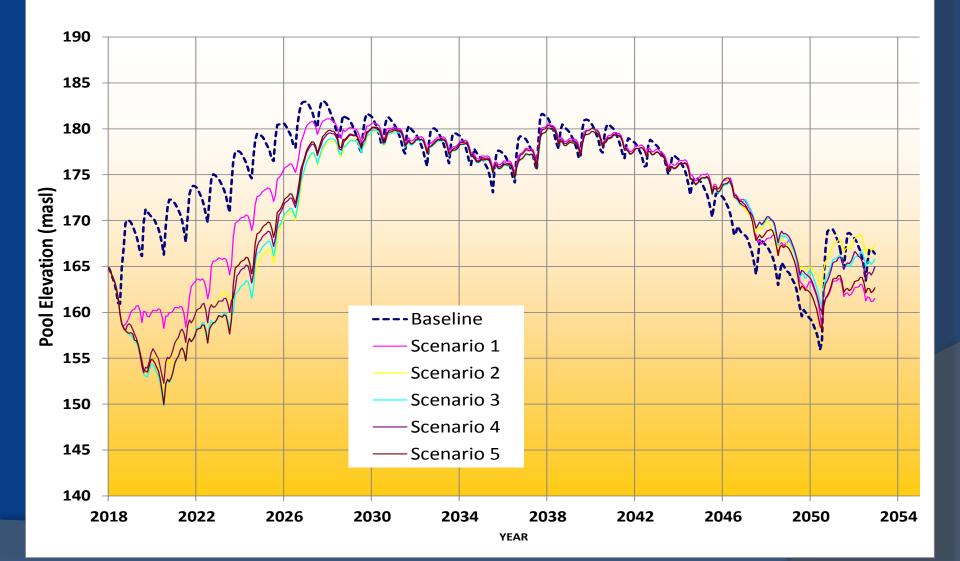

Baseline

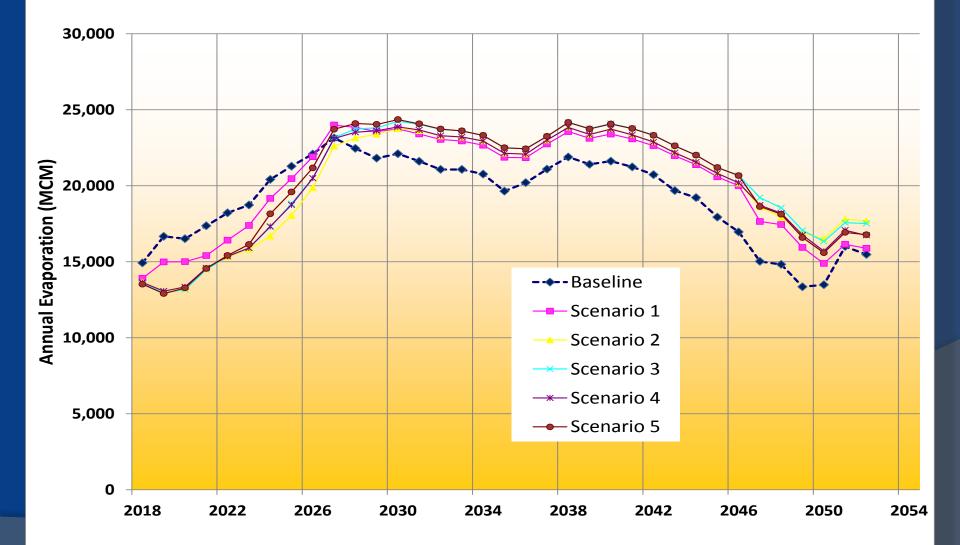
- Scenario 1: Renaissance 640
- Scenario 2: Karadobi + Beko Abo Low + Mendaya + Renaissance 620
- Scenario 3: Karadobi + Beko Abo Low + Mendaya Upper + Renaissance 640
- Scenario 4: Beko Abo High + Mendaya + Renaissance 620
- Scenario 5: Beko Abo High + Mendaya Upper + Renaissance 640


• Proposed Reservoirs Operated:

- 1. Meet Hydropower Demands
- 2. Allow Minimum Environmental Releases


Total System Power Generation


Total System Annual Energy


Total Egyptian Annual Energy Output

High Aswan Pool Elevation

Total East Nile Reservoir Evaporation

Agenda Topics

POTENTIAL APPLICATIONS

- Renaissance Dam Reservoir Filling
- Coordination of Sudanese Reservoirs
- New Ethiopian Reservoir Operation Paradigms
 - Maximize Energy -> Ethiopia/System Hydropower
 - Minimum Impact -> Run-of-River
 - Protect Agriculture and Enviro > Design Floods
 - Coordination -> Meet Downstream Demands
- How Can Reservoir Operations be Coordinated Across Borders to <u>Eliminate or Minimize Harm</u> to Sudan and Egypt?

BENEFIT SHARING

BENEFIT SHARING

Don't just Share the Water
Share the Benefits that a River Provides

- Economic Benefits
- Environmental Benefits
- Benefits of Reduced Tensions
- Benefits of Regional Integration

(Sadoff and Grey, 2002)

MOVING FORWARD

1. TRAINING — Cairo, Khartoum, Addis Ababa

- Training with the RiverWare Software 3 Days
- Training with the Eastern Nile Model 2 Days

2. REFINE MODEL

- Country/Stakeholder Driven
- Refine Projected Demands
- Verify Evaporation Rates
- Current Reservoir Operations
- Multiple Hydrologic Traces Climate Change Inputs

3. EXPAND and EXPLORE

- Working Together To Explore Options
- Create an online Technical Working Group
- Joint Recommendations for Operations

Questions? Comments?

WATER BALANCE CONSULTING

Kevin Wheeler, P.E. PO Box 2153 Boulder, CO 80306 kgw@waterbalance.org http://waterbalance.org